3.10 Parcel 49 – Former Squier Laboratory Complex, Museum Storage Facility, and MP Battery Test Facility

3.10.1 Site Description

Parcel 49 encompasses the buildings associated with the former Squier Laboratory and other facilities with similar operational histories in the north-central portion of the MP. The Squier Laboratory Complex included existing Bldgs 283, 285, 288, 292, 293, and 298, and former Bldgs S-5, S-6, S-6 Annex, S-9, S-10, S-11, S-12, and S-15. Bldgs 291, 294, and 295, and former Bldgs 289, 290, L-3, T-45, X-9, and X-7 have a similar operational history and are included in Parcel 49 along with the Squier Laboratory buildings. Historic aerial photographs and site plans which show the location of former buildings are included in **Appendix G** for reference. Many of the "buildings" were identified as part of the Squier Laboratory Complex in historic reports, without any indication of the specific location of these facilities. It is assumed that these buildings were small, temporary, and/or auxiliary structures in the immediate vicinity of Squier Laboratory and nearby buildings, such that they did not warrant individual identification on historic site plans of the area.

In 1934, FTMM laboratory operations were consolidated in a new facility, Squier Laboratory. Squier Laboratory continued to be the principal laboratory on post until 1954 when the new R&D facility, Myer Center (Bldg 2700), was opened. The Squier Laboratory complex supported the Signal Corps Laboratories' research into batteries and electronics coatings. Environmental conditions were identified for some of the laboratory operations based on the size and intensity of historical operations and the timeframe during which the services took place. A detailed description of process operations that took place in this area is presented in Section 4.3.2 of the FTMM Phase I ECP (1). Environmental concerns associated with Squier Laboratory operations include the use of chemicals, solvents, radioisotopes, and metals when waste handling procedures may not have been sufficiently protective to preclude a release to the environment. The potential for a release to the environment from laboratory operations in the following buildings is considered to be a Recognized Environmental Condition:

- Squier Laboratory in Bldg 283. Bldg 283 has a long and extensive history of laboratory operations.
- Bldg 288 was historically used for reproduction and photoprocessing.
- Bldg 291 formerly housed the Crystal Section where crystals were grown.
- Bldg 292 formerly housed the Climatic Section where testing of electronic equipment at environmental extremes was conducted.
- Former Bldg 293 housed a battery testing operation. A ground stain was observed emanating from the vicinity of Bldg 293 in aerial photographs taken in

1969 and 1974 (18). Aerial photographs are included in **Appendix G**. Bldg 293 was destroyed by a fire. A second Bldg 293 was constructed. The new building is currently used for battery testing. Current battery testing operations are not considered a data gap.

- Bldg 294 formerly housed a shock and vibration testing operation.
- Bldg 295 was used for R&D fabrication for reinforced plastics.
- Operations in Bldgs S-5, S-9, S-10, S-11, and S-12 used various laboratory chemicals in hoods for the manufacture and testing of dry cell batteries.
- Bldg L-3 was used for paint experimentation.
- Bldg T-45 was used for the experimental manufacture of storage batteries.
- Bldg X-9 was used for testing gasoline engines.
- Bldg X-7 was used for mixing acids.

A corollary investigation of the historical use of RAMs was conducted by Cabrera. A Special Investigation Report issued in 1951 for the Squier Signal Laboratory Director discussed a wipe test performed on samples of aluminum covered with polonium lacquer (approximately 230 microcuries) to ensure that no hazard was present at Bldg 283. Bldg 292 serves as storage space for the communications-electronics museum. This storage space contains or contained a Chinese radio and a vacuum tube where radiological commodities were identified with radiological readings above background levels, and radium-contaminated components were found in a posted radioactive storage locker. This storage space once contained 65 items containing RAM, but numerous non-radioactive items have since been removed (3).

Recommendations for SI activity related to RAM were prepared based on the HSA results and will be conducted at Bldg 283 and Bldg 292 upon departure of the current tenants from the FTMM property (45). Additional information pertaining to this parcel can be found in Section 3.3, Section 4.3.2.1.1, Section 4.3.2.1.2, Section 4.3.2.1.6, Section 4.4.4.2, Table 4-3, Section 4.4.4.3, Table 4-4, Section 4.6.2.7, Section 5.1.1.2.1, Section 5.8, Table 5-16, Section 5.13.3, Section 5.1.3.4, and Section 5.1.3.6 of the Phase I ECP (1).

3.10.2 Previous Investigations

Multiple former USTs associated with buildings throughout Parcel 49 have been removed under the FTMM UST Management Program and are summarized within the FTMM Phase I ECP Report (1). Bldg 283 groundwater and soil contamination associated with former USTs that were removed is currently being addressed under the FTMM IRP as site FTMM-61.

3.10.3 Site Investigation Sampling

As noted in **Section 3.10.2**, numerous former USTs have been removed within Parcel 49, and contamination identified in association with the former USTs at Bldg 283 is currently being addressed under the FTMM IRP. However, limited evaluation of potential discharges related to previous building operations has been conducted within Parcel 49. A review of historical site plans, IRP documents, sanitary plans, and stormwater management plans was conducted to evaluate potential discharge locations throughout the parcel. The following soil sampling, sediment sampling, and groundwater sampling was performed to determine if any contamination exists.

Geoprobe® Investigation

Soil and groundwater samples were collected in December 2007 in Parcel 49 in order to determine if any contamination exists as a result of former industrial and laboratory operations. A total of six surface soil samples and seven subsurface soil samples (including one duplicate sample) were collected from six distinct Geoprobe® borings located throughout Parcel 49 (**Figure 3.10-1**). Surface soil samples for non-VO analysis were collected from the 0- to 6-inch interval bgs. For borings located in paved areas, non-VO surface soil samples were collected from the 0- to 6-inch interval directly below the pavement sub-base. Surface soil samples for VO analysis were collected from the 6- to 24-inch interval bgs. Subsurface soil samples were collected from the 6-inch interval directly above the water table. Field screening of soil boring cores were conducted using PID and FID instruments. No visual or olfactory evidence of contaminated soil was noted.

A total of two groundwater samples were collected from two distinct temporary wells that were installed using the Geoprobe® rig. P49GW-1 was installed north of Bldg 293, and P49GW-2 was installed east of former Bldg 289. Temporary wells were constructed of PVC and 5 ft of factory-slotted screen. A total of five groundwater samples (including one duplicate sample) were collected from four existing FTMM monitoring wells located along the northern perimeter of the former Squier Complex area to evaluate groundwater on a parcel-wide basis (**Figure 3.10-1**).

Surface Soil Investigation

Surface samples were collected in December 2007 in Parcel 49. A total of seven surface soil samples, located throughout Parcel 49, were collected from seven distinct hand augered borings (**Figure 3.10-1**). Samples P49SS-7 and 8 were collected near doorways in the courtyard of Bldg 283 to investigate potential discharges from previous laboratory operations. Sample P49SS-9 was collected near the eastern doorway of Bldg 291 to investigate potential discharges from previous laboratory operations. Samples P49SS-10;13 were collected around a concrete slab for former Bldg 293 to investigate potential discharges from a fire that destroyed the building. Surface soil samples for non-VO analysis were collected from the 0- to 6-inch interval bgs. Surface soil samples collected for VO analysis were collected from the 18- to 24-inch interval bgs. No visual or olfactory evidence of soil contamination was noted.

Sediment Investigation

Sediment samples were collected in December 2007 in Parcel 49. A total of seven (including one duplicate sample) sediment samples were collected from three distinct hand augered borings located along the south bank of Parkers Creek (**Figure 3.10-1**). Samples were collected in order to determine if previous discharges from former septic and sump systems associated with the Squier Complex have impacted sediment within Parkers Creek. Sediment samples for non-VO and VO analysis were collected from the 0- to 6-inch interval bgs and the 18- to 24-inch interval bgs. No visual or olfactory evidence of contamination was noted.

Table 3.10-1 presents a summary of all field activities, and all sample locations are provided on **Figure 3.10-1**. An analytical summary of sampling activities, including sample IDs, collection dates, and analytical parameters, is provided in **Table 3.10-2**.

Sample Location	Sample Media	Sample Location Rationale	Analytical Suite
49SS-1 and 2 (2 samples)	Surface soil	Soil samples were collected from the 0- to 6-inch bgs interval from Geoprobe® borings located north of Bldg 293 and east of former Bldg 289 to investigate potential discharges from previous industrial activities within the buildings.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SB-1 and 2 (2 samples)	Subsurface soil	Soil samples were collected from the 6-inch interval directly above the water table (depths ranging from 5.5 to 9.0 ft bgs) from Geoprobe® borings located north of Bldg 293 and east of former Bldg 289 to investigate potential discharges from previous industrial activities within the buildings. Field screening of the entire Geoprobe® soil core was conducted using PID and FID meters.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49GW-1 and 2 (2 samples)	Groundwater	Groundwater samples were collected from the specified Geoprobe® borings located north of Bldg 293 and east of former Bldg 289 to investigate potential discharges from previous industrial activities within the buildings.	TCL+30 (w/o pesticides/PCBs), tertiary butyl alcohol (TBA)
49SS-3 and 4 (2 samples)	Surface soil	Soil samples were collected from the 0- to 6-inch bgs interval from Geoprobe® borings located at loading docks of Bldg 283 to investigate potential historical discharges from previous laboratory operations.	TCL+30 (w/o pesticides), TAL Metals, cyanide

Table 3.10-1Parcel 49 Sampling Location, Rationale and Analytical

Sample Location	Sample Media	Sample Location Rationale	Analytical Suite
49SB-3 and 4 (2 samples)	Subsurface soil	Soil samples collected from the 6-inch interval directly above the water table (depths ranging from 3.5 to 8.0 ft bgs) from Geoprobe® borings located at loading docks of Bldg 283 to investigate potential historical discharges from previous laboratory operations. Field screening of the entire Geoprobe® soil core was conducted using PID and FID meters.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SS-5 and 6 (2 samples)	Surface soil	Soil samples were collected from the 0- to 6-inch bgs interval from Geoprobe® borings located at loading dock and garage doors of Bldg 292 to investigate potential historical discharges from previous laboratory operations. Numerous underground utilities are present in the immediate vicinity of the loading dock on the east side of Bldg 292. Therefore, the location of 49SS-5 had to be moved east of the originally proposed location.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SB-5 and 6 (3 samples – includes 1 duplicate sample)	Subsurface soil	Soil samples were collected from the 6-inch interval directly above the water table (depth 6.0 to 6.5 ft bgs) from Geoprobe® borings located at loading docks and garage doors of Bldg 292 to investigate potential historical discharges from previous laboratory operations. Field screening of the entire Geoprobe® soil core was conducted using PID and FID meters. Numerous underground utilities are present in the immediate vicinity of the loading dock on the east side of Bldg 292. Therefore, the location of 49SS-5 had to be moved east of the originally proposed location.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SS-7 and 8 (2 samples)	Surface soil	Soil samples were collected from the 0- to 6-inch bgs interval at doorways within courtyard of Bldg 283 to investigate potential historical discharges from previous laboratory operations.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SS-9 (1 sample)	Surface soil	A soil sample was collected from the 0- to 6-inch bgs interval at a western doorway of Bldg 291 to investigate potential historical discharges from previous laboratory operations.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SS-10, 11, 12, and 13 (4 samples)	Surface soil	Soil samples were collected from the 0- to 6-inch bgs interval around the concrete slab for former Bldg 293 (immediately north of current building) to investigate potential discharges from the fire which destroyed the building.	TCL+30 (w/o pesticides), TAL Metals, cyanide
296MW07, 283MW03, 283MW01, B4MW0B4 (4 samples)	Groundwater	Groundwater samples were collected from the existing monitoring wells located along the northern perimeter of the former Squier Complex area to evaluate groundwater on a parcel-wide basis.	TCL+30 (w/o pesticides), TBA, TAL Metals, cyanide

Sample Location	Sample Media	Sample Location Rationale	Analytical Suite
49SD-1, 49SD-1D (2 samples)	Sediment	Sediment samples were collected from the 0- to 6- inch bgs interval and at the 18- to 24-inch interval bgs to investigate potential discharges from the former septic system that was associated with former Bldg 78.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SD-2, 49SD-2D (3 samples – includes 1 duplicate sample)	Sediment	Sediment samples were collected from the 0- to 6- inch bgs interval and at the 18- to 24-inch interval bgs to investigate potential discharges from sump pumps identified within the basement of Bldg 283.	TCL+30 (w/o pesticides), TAL Metals, cyanide
49SD-3, 49SD-3D (2 samples)	Sediment	Sediment samples were collected from the 0- to 6- inch bgs interval and at the 18- to 24-inch interval bgs to investigate potential downgradient impact to sediment from the sump pumps in the basement of Bldg 283 and the former septic discharge from former Bldg 78.	TCL+30 (w/o pesticides), TAL Metals, cyanide

3.10.4 Site Investigation Results

Geoprobe®/Soil Investigation Results

Surface and subsurface soil samples were analyzed for TCL+30 (minus pesticides), TAL metals, and cyanide. Groundwater samples 49GW-1;2 were analyzed for TCL+30 (minus pesticides/PCBs) and TBA. Monitoring well groundwater samples were analyzed for TCL+30 (minus pesticides), TBA, TAL metals, and cyanide.

Soil

Five VOs, 22 B/Ns, 20 metals, and one Aroclor were detected in Parcel 49 soil samples, presented in **Table 3.10-3**. The five VOs were detected at concentrations below NJDEP NRDCSCC. Seven of the 22 detected B/Ns (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene) were detected at concentrations that exceeded NJDEP NRDCSCC. B/Ns were detected above the NRDCSCC and their respective MPBC in five surface soil samples, P49-SB4-A, P49-SS7-A, P49-SS8-A, P49-SS9-A, and P49-SS13-A. Of the 20 metals, one (arsenic) was detected at concentrations that exceeded NJDEP NRDCSCC.

Four soil samples (49SB-5A, 49SB-5C, 49SB-6A, and 49SB-6C) each contained an unknown TIC at elevated concentrations ranging from 330 mg/kg to 460 mg/kg. The retention time for the unknown TIC ranged from 7.23 minutes to 7.27 minutes in the four samples. This suggests the same unknown TIC was identified in all four samples. One or more semi-volatile constituents were identified in each of the four samples; however, no TCL organic constituents were identified at concentrations greater than the NRDCSCC.

Arsenic was detected above the NRDCSCC of 20 mg/kg in four subsurface soil samples collected in Parcel 49 at concentrations ranging from 21.5 mg/kg in sample P49-SB5-C to 24.3 mg/kg in sample P49-SB2-C. The arsenic concentrations in two samples also exceeded the MPBC of 22.9 mg/kg. The three isolated locations at which arsenic was detected at concentrations marginally above the NRDCSCC of 20 mg/kg are all greater than 6 ft bgs, and no detections in exceedance of criteria were present in surface soil.

There are several factors both natural and anthropogenic that can have an influence on arsenic levels in the soil at FTMM. The primary natural influence on the chemical concentrations in the soil at FTMM is parent material. The parent material at FTMM is glauconitic soil of the Tinton and Red Bank sands and their fluvially- and tidally-reworked equivalents (47). Total arsenic levels in glauconite-bearing soils in New Jersey have been reported to range up to 131 mg/kg, with a median of 30 mg/kg (48). Anthropogenic influences on arsenic levels in the soil include the use of pesticides and herbicides. Arsenic was a common constituent of herbicides and pesticides in the past. As a result of these natural and anthropogenic influences, arsenic is not considered a COC in the soil.

As shown in **Table 3.10-3**, one PCB, Aroclor 1260, was detected in one surface soil sample (P49-SS8-A) at a concentration of 8.85 mg/kg, which exceeds the NJDEP NRDCSCC of 2 mg/kg.

Cyanide was not detected in soil.

B/Ns and PCBs are COCs in soil at Parcel 49.

Groundwater

A total of nine VOs were detected in groundwater samples collected in Parcel 49. Two (benzene and bromodichloromethane) were detected at concentrations that exceed the respective GWQC. Benzene was detected at a concentration that exceeded the NJDEP GWQC of 1 μ g/L in one groundwater sample (P49-GW-1) at a concentration of 1.24 μ g/L. Bromodichloromethane was detected at a concentration that exceeded the NJDEP GWQC of 1 μ g/L in one groundwater sample (P49-GW-2) at a concentration of 1.35 μ g/L.

A total of four B/Ns were detected in Parcel 49 groundwater samples. Of the four B/Ns, one (bis[2-ethylhexyl]phthalate) was detected at concentrations that exceeded NJDEP GWQC. Bis(2-ethylhexyl)phthalate was detected at concentrations exceeding the NJDEP GWQC of 3 μ g/L in three groundwater samples at concentrations ranging from 3.55 μ g/L in P49-296-MW7 to 25.94 μ g/L in P49-GW-1. Bis(2-ethylhexyl)phthalate is present in a wide variety of plastic products, is commonly detected in field and laboratory QC samples, and was detected in the field blank associated with these samples. Therefore, it is not considered a COC in groundwater at Parcel 49.

A total of 18 metals were detected in Parcel 49 groundwater samples collected from monitoring wells. Of the 18 metals detected, six (aluminum, arsenic, beryllium, iron,

manganese, and sodium) were detected at concentrations that exceeded NJDEP GWQC.

Several natural and anthropogenic factors contribute to the wide range in concentrations of metals in soils, which impact the concentration of metals in groundwater. Soils derived from glauconitic sands contain abundant aluminum, calcium, potassium, iron, magnesium, manganese, and sodium (among others), which are likely to be present at elevated concentrations in the groundwater (47). Sodium concentrations can also be influenced by saltwater intrusion at FTMM. Due to the naturally elevated levels of these native metals in the groundwater, aluminum, iron, manganese, and sodium are not considered COCs. The remaining metals detected in groundwater samples have been compared to the respective GWQC and MBCs, presented in **Appendix H**, to determine COCs.

Arsenic was detected at concentrations exceeding the NJDEP GWQC of 3 μ g/L in two samples, 49MW-3 (3.68 μ g/L) and 49MW-7 (6.17 μ g/L). However, these concentrations did not exceed the MPBC of 89.3 μ g/L. In addition, arsenic is associated with the native glauconitic sands (48). The elevated arsenic concentrations in the native soil in turn influence the arsenic levels in groundwater. Beryllium was detected at concentrations exceeding the NJDEP GWQC of 1 μ g/L in two samples, 49MW-1 (1.28 μ g/L) and 49MW-1-DUP (1.33 μ g/L). However, these concentrations did not exceed the MPBC of 2.1 μ g/L. Therefore, arsenic and beryllium are not considered COCs.

As shown in **Table 3.10-4**, cyanide was not detected in the groundwater samples.

Benzene and bromodichloromethane are COCs in groundwater at Parcel 49.

Sediment Investigation Results

Sediment samples were analyzed for TCL+30 (without pesticides), TAL metals, and cyanide. Parkers Creek is a tidally influenced water body in this portion of the facility; therefore, sediment analytical results were evaluated in relation to the Marine/Estuarine Sediment Screening Values-ER-L.

As presented in **Table 3.10-5**, one VO, ten B/Ns, and 20 metals were detected in Parcel 49 sediment samples. The VO acetone and B/Ns were detected at concentrations below the ER-L. Of the 20 metals, nine (arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) were detected at concentrations that exceeded the ER-L. Two metals, zinc and chromium, were detected above the ER-M.

Arsenic was detected above the ER-L of 8.2 mg/kg and the MPBC of 14.5 mg/kg in all seven sediment samples collected in Parcel 49 at concentrations ranging from 14.8 mg/kg in sample P49SD-2A to 29.7 mg/kg in sample P49SD-3A.

Cadmium was detected above the ER-L of 1.2 mg/kg in four sediment samples (including the duplicate) collected in Parcel 49 at concentrations ranging from 1.41 mg/kg in sample P43SD-2B to 5.55 mg/kg in sample P43SD-2A-DUP. A background concentration has not been established for cadmium.

Chromium was detected above the ER-L of 81 mg/kg and the MPBC of 88.1 mg/kg in all seven sediment samples (including the duplicate sample) collected in Parcel 49 at concentrations ranging from 149 mg/kg in sample P49SD-3A to 394 mg/kg in sample P49SD-2B. Chromium was detected in one sample, P49SD-2B, at a concentration above the ER-M of 370 mg/kg.

Copper was detected above the ER-L of 34 mg/kg and the MPBC of 48.4 mg/kg in three sediment samples collected in Parcel 49 at concentrations of 76.5 mg/kg in sample P49SD-3A, 82.3 mg/kg in sample P49SD-2A, and 111 mg/kg in sample P49SD-2A-DUP.

Lead was detected above the ER-L of 47 mg/kg and the MPBC of 64.1 mg/kg in one sediment sample collected in Parcel 49 at a concentration of 148 mg/kg in sample P49SD-3A.

Mercury was detected above the ER-L of 0.15 mg/kg in three sediment samples collected in Parcel 49 at concentrations ranging from 0.23 mg/kg in sample P49SD-3A to 0.53 mg/kg in sample P49SD-2A-DUP. The mercury concentrations did not exceed the MPBC of 1.7 mg/kg.

Nickel was detected above the ER-L of 21 mg/kg in two sediment samples collected in Parcel 49 at concentrations of 44 mg/kg in sample P43SD-2A and 68.5 mg/kg in sample P49SD-2A-DUP. The nickel concentrations did not exceed the MPBC of 131 mg/kg.

Silver was detected above the ER-L of 1 mg/kg in one sediment sample collected in Parcel 49 at a concentration of 1.4 mg/kg in sample P49SD-2A. A background concentration has not been established for silver.

Zinc was detected above the ER-L of 150 mg/kg in three sediment samples collected in Parcel 49 at concentrations ranging from 155 mg/kg in sample P49SD-2B to 2,090 mg/kg in sample P49SD-2A-DUP. The zinc concentration in P49SD-2A and P49SD-2A DUP exceeded the MPBC of 162 mg/kg and the ER-M of 410 mg/kg. Metals are COCs in sediment at Parcel 49.

PCBs and cyanide were not detected in Parcel 49 sediment samples.

3.10.5 Summary and Conclusions

Analytical results for soil samples exceeded NJDEP NRDCSCC for B/Ns and Aroclor 1260. Aroclor 1260 and B/Ns (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene) are COCs in soil at Parcel 49 and further delineation is recommended. The B/N COCs identified in soil at Parcel 49 are polycyclic aromatic

hydrocarbons (PAHs). PAHs are contained in asphalt and are commonly detected in soil under asphalt pavement. Re-collection of samples at locations that are currently paved and/or were paved in the past will be conducted as part of the further evaluation to determine if the PAHs detected in soil are attributable to asphalt.

Benzene and bromodichloromethane were detected at concentrations slightly above the NJDEP GWQC and are considered COCs in groundwater. Benzene and bromodichloromethane in groundwater at Parcel 49 will be incorporated into the existing M-18 groundwater CEA.

Seven metals (arsenic, cadmium, chromium, copper, lead, silver, and zinc) were detected in sediment at concentrations greater than the Marine/Estuarine Sediment Screening Values-ER-L and MPBC. They are considered COCs in Parcel 49 sediment. Sediment at Parcel 49 is recommended for further evaluation as part of a facility-wide baseline ecological evaluation.

Table 3.10-2Parcel 49 Sample and Analytical Summary

Media	Туре	Field Sample #	Sample Date	Sample Time	Begin Depth	End Depth	трнс	VO+15	B\N+15	PCBs	TAL Metals	Cyanide	Mercury	Ammonia/ Nitrate/ Nitrite	COMMENTS/VARIANCES
BLANK	TRIP	TRIP BLANK-SO	12/06/07	-				Х							
SOIL	HAND AUGER	P49-SS10-A	12/06/07	9:15	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS10-B	12/06/07	9:15	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS11-A	12/06/07	9:30	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS11-B	12/06/07	9:30	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS12-A	12/06/07	10:45	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS12-B	12/06/07	10:45	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS13-A	12/06/07	10:50	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS13-B	12/06/07	10:50	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS9-A	12/06/07	11:05	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS9-B	12/06/07	11:05	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS8-A	12/06/07	11:30	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS8-B	12/06/07	11:30	1.5	2.0		Х							
SOIL	HAND AUGER	P49-SS7-A	12/06/07	11:25	0.0	0.5			Х	Х	Х	Х			
SOIL	HAND AUGER	P49-SS7-B	12/06/07	11:25	1.5	2.0		Х							
SOIL	GEOPROBE	P49-SB1-A	12/06/07	13:30	0.0	0.5			Х	Х	Х	Х			
SOIL	GEOPROBE	P49-SB1-B	12/06/07	13:30	1.5	2.0		Х							
SOIL	GEOPROBE	P49-SB1-C	12/06/07	13:40	5.5	6.0		Х	Х	Х	Х	Х			
SD	HAND AUGER	P49-SD1-A	12/06/07	14:40	0.0	0.5			Х	Х	Х	Х			
<u>CD</u>			40/07/07	12.20	0.0	0.5		v							Associated trip blank collected with Parcel 27 data. No field
SD	HAND AUGER	P49-SD1-A	12/27/07	13:30	0.0	0.5		X							blank or duplicate collected 12/27/07.
SD	HAND AUGER	P49-SD1-B	12/06/07	14:40	1.5	2.0		Х							Associated trip blank collected with Parcel 27 data. No field
SD	HAND AUGER	P49-SD1-B	12/27/07	13:30	1.5	2.0			х	х	х	Х			blank or duplicate collected 12/27/07.
SD	HAND AUGER	P49-SD2-A	12/06/07	15:00	0.0	0.5			Х	Х	Х	Х			
SD	HAND AUGER	P49-SD2-A	12/27/07	13:45	0.0	0.5		х							Associated trip blank collected with Parcel 27 data. No field blank or duplicate collected 12/27/07.
0.0			4.0.10.0.10.7	45.00					V	X	V	V			Mistake on chain of custody. VOAs were collected at 1.5-2.0. The duplicate for VOAs should have been listed as a separate
SD	HAND AUGER	P49-SD2-A DUPLICATE	12/06/07	15:00	0.0	0.5			Х	Х	Х	Х			sample associated with B depth.
SD	HAND AUGER	P49-SD2-B	12/06/07	15:00	1.5	2.0		Х							

Table 3.10-2Parcel 49 Sample and Analytical Summary

Media	Туре	Field Sample #	Sample Date	Sample Time	Begin Depth	End Depth	трнс	VO+15	3\N+15	PCBs	TAL Metals	Cyanide	Mercury	Ammonia/ Nitrate/ Nitrite	COMMENTS/VARIANCES
SOIL	HAND AUGER	P49-SD2-B DUPLICATE	12/06/07	15:00	1.5	2		х							Mistakenly labeled at A depth (0.0-0.5) on chain of custody.
SD	HAND AUGER	P49-SD2-B	12/27/07	13:45	1.5	2.0			х	х	х	х			Associated trip blank collected with Parcel 27 data. No field blank or duplicate collected 12/27/07.
SD	HAND AUGER	P49-SD3-A	12/06/07	15:30	0.0				Х	Х	Х	Х			
SD	HAND AUGER	P49-SD3-A	12/27/07	13:55	0.0	0.5		х							Associated trip blank collected with Parcel 27 data. No field blank or duplicate collected 12/27/07.
SD	HAND AUGER	P49-SD3-B	12/06/07	15:30	1.5			Х							
SD	HAND AUGER	P49-SD3-B	12/27/07	13:55	1.5				х	х	х	х			Associated trip blank collected with Parcel 27 data. No field blank or duplicate collected 12/27/07.
BLANK	FIELD	FIELD BLANK-SO	12/06/07	15:40				Х	Х	Х	Х	Х			
BLANK	TRIP	TRIP BLANK	12/07/07	-				Х							
SOIL SOIL	GEOPROBE GEOPROBE	P49-SB2-A P49-SB2-B	12/07/07	9:20 9:20	0.5			x	Х	Х	x	х			Sample depth in field documentation was recorded from top of soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
SOIL	GEOFROBE	F49-3B2-B	12/07/07	9.20	1.0	2.0		^							Sample depth in field documentation was recorded from top of
SOIL	GEOPROBE	P49-SB2-C	12/07/07	9:40	9.0	9.5		х	х	х	х	х			soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
SOIL	GEOPROBE	P49-SB4-A	12/07/07	10:10	0.5				х	х	х	х			Sample depth in field documentation was recorded from top of soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
SOIL	GEOPROBE	P49-SB4-B	12/07/07	10:10	1.5	2.0		Х							Comple dopth in field dogumentation was received to the
SOIL	GEOPROBE	P49-SB4-C	12/07/07	10:20	8.0			х	X	X	X	X			Sample depth in field documentation was recorded from top of soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
SOIL	GEOPROBE	P49-SB3-A	12/07/07	11:00	0.0				Х	Х	Х	Х			
SOIL	GEOPROBE	P49-SB3-B	12/07/07	11:00	1.5			Х							
SOIL	GEOPROBE	P49-SB3-C	12/07/07	11:10	3.5	4.0		Х	Х	Х	Х	Х			
BLANK	FIELD	FIELD BLANK	12/07/07	11:30				Х	Х	Х	Х	Х			
SOIL	GEOPROBE	P49-SB5-A	12/07/07	13:50	0.0				Х	Х	Х	Х			
SOIL	GEOPROBE	P49-SB5-B	12/07/07	13:50	1.5			Х							
SOIL	GEOPROBE	P49-SB5-C	12/07/07	14:05	6.0	6.5		Х	Х	Х	Х	Х			

Table 3.10-2Parcel 49 Sample and Analytical Summary

Media	Туре	Field Sample #	Sample Date	Sample Time	Begin Depth	End Depth	ТРНС	VO+15	B\N+15	PCBs	TAL Metals	Cyanide	Mercury	Ammonia/ Nitrate/ Nitrite	COMMENTS/VARIANCES
SOIL	GEOPROBE	P49-SB5-C DUPLICATE	12/07/07	14:05	6.0	6.5		Х	Х	Х	Х	Х			
SOIL		P49-SB6-A	12/07/07	14:25	0.5	1.0			х	х	х	x			Sample depth in field documentation was recorded from top of soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
SOIL	GEOPROBE	P49-SB6-B	12/07/07	14:25	1.5	2.0		Х							Sample depth in field documentation was recorded from top of
SOIL	GEOPROBE	P49-SB6-C	12/07/07	14:40	6.5	7.0		х	Х	Х	Х	x			soil. Reported bgs depths adjusted to account for surface asphalt and sub-base.
BLANK	TRIP	TRIP BLANK-AQ	12/08/07	8:30				Х							
BLANK	FIELD	FIELD BLANK-AQ	12/08/07	10:00				Х	Х	Х	Х	Х			
GW	GEOPROBE	P49-GW-1	12/08/07	12:30	5.0	10.0		Х	Х						
GW	GEOPROBE	P49-GW-2	12/08/07	12:00	9.0	14.0		Х	Х						
GW	MONITORING WELL	P49-296MW-7	12/08/07	14:30	1.8	11.8		Х	Х	Х	Х	Х			
GW	MONITORING WELL	P49-283MW-3	12/08/07	13:00	14.1	24.1		Х	Х	Х	Х	Х			
GW	MONITORING WELL	P49-283MW-1	12/08/07	12:40	9.8	19.8		Х	Х	Х	Х	Х			
GW	MONITORING WELL	P49-283MW-1 DUPLICATE	12/08/07	12:40	9.8	19.8		Х	Х	Х	Х	Х			
GW	MONITORING WELL	P49-B4MW0B4	12/08/07	15:30	7.1	17.1		Х	Х	Х	Х	Х			

X = Sample analyzed for the indicated analytical parameter suite

Table 3.10-3 Fort Monmouth Phase II Site Investigation, Parcel 49 Summary of Analytical Parameters Detected in Soil (mg/kg)

														7
						1			al Results		1		1	
		Sample ID:	P49-SB1-A	P49-SB1-B	P49-SB1-C	P49-SB2-A	P49-SB2-B	P49-SB2-C	P49-SB3-A	P49-SB3-B	P49-SB3-C	P49-SB4-A	P49-SB4-B	P49-SB4-C
		Lab ID:	7051517	7051518	7051519	7051603	7051604	7051605	7051609	7051610	7051611	7051606	7051607	7051608
		Date Sampled:	12/06/2007	12/06/2007	12/06/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007
		Depth (ft. bgs):	0.0-0.5	1.5-2.0	5.5-6.0	0.5-1.0	1.5-2.0	9.0-9.5	0.0-0.5	1.5-2.0	3.5-4.0	0.5-1.0	1.5-2.0	8.0-8.5
Chemical	NRDCSCC ²	IGWSCC ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatiles						-	•	•	•					
Acetone	1000	100	NT	0.390 B	0.420 B	NT	0.230 J	0.300 U	NT	0.260 J	0.370 J	NT	0.280	0.290 J
Carbon disulfide	NLE	NLE	NT	0.028 J	0.330 U	NT	0.260 U	0.300 U	NT	0.320 U	0.380 U	NT	0.270 U	0.320 U
Ethylbenzene	1000	100	NT	0.290 U	0.330 U	NT	0.260 U	0.300 U	NT	0.320 U	0.380 U	NT	0.270 U	0.320 U
Toluene	1000	500	NT	0.290 U	0.330 U	NT	0.260 U	0.300 U	NT	0.320 U	0.380 U	NT	0.270 U	0.320 U
Xylenes (Total)	1000	67	NT	0.870 U	0.990 U	NT	0.780 U	0.900 U	NT	0.960 U	1.150 U	NT	0.810 U	0.970 U
Semi-Volatiles			-			-							-	
Acenaphthene	10000	100	1.100 U	NT	1.300	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	1.100 U	NT	1.300 U
Acenaphthylene	NLE	NLE	0.056 J	NT	0.210 J	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	0.920 J	NT	1.300 U
Anthracene	10000	100	1.100 U	NT	0.590 J	1.100 U	NT	1.300 U	0.100 J	NT	0.034 J	0.370 J	NT	1.300 U
Benzo[a]anthracene	4	500	0.091 J	NT	0.730 J	1.100 U	NT	1.300 U	0.550 J	NT	0.110 J	2.500	NT	1.300 U
Benzo[a]pyrene	0.66	100	0.083 J	NT	0.560 J	1.100 U	NT	1.300 U	0.440 J	NT	1.200 U	2.200	NT	1.300 U
Benzo[b]fluoranthene	4	50	0.120 J	NT	0.750 J	1.100 U	NT	1.300 U	0.670 J	NT	0.120 J	2.800	NT	1.300 U
Benzo[g,h,i]perylene	NLE	NLE	1.100 U	NT	1.100 U	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	0.900 J	NT	1.300 U
Benzo[k]fluoranthene	4	500	0.038 J	NT	0.320 J	1.100 U	NT	1.300 U	0.260 J	NT	0.047 J	0.890 J	NT	1.300 U
bis(2-Ethylhexyl)phthalate	210	100	0.058 J	NT	1.100 U	1.100 U	NT	1.300 U	0.450 J	NT	0.130 J	1.100 U	NT	1.300 U
Butyl benzyl phthalate	10000	100	1.100 U	NT	1.100 U	1.100 U	NT	1.300 U	1.800	NT	0.250 J	1.100 U	NT	1.300 U
Chrysene	40	500	0.120 J	NT	0.810 J	1.100 U	NT	1.300 U	0.610 J	NT	0.130 J	3.500	NT	1.300 U
Dibenz[a,h]anthracene	0.66	100	1.100 U	NT	1.100 U	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	1.100 U	NT	1.300 U
Dibenzofuran	NLE	NLE	1.100 U	NT	0.440 J	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	1.100 U	NT	1.300 U
Di-n-butyl phthalate	10000	100	1.500	NT	1.100 B	0.420 JB	NT	1.100 JB	0.810 JB	NT	8.500 B	1.800 B	NT	0.940 JB
Fluoranthene	10000	100	0.110 J	NT	1.600	1.100 U	NT	1.300 U	1.000 J	NT	0.220 J	1.500	NT	1.300 U
Fluorene	10000	100	1.100 U	NT	1.100 J	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	0.130 J	NT	1.300 U
Indeno[1,2,3-cd]pyrene	4	500	1.100 U	NT	0.140 J	1.100 U	NT	1.300 U	0.160 J	NT	1.200 U	0.680 J	NT	1.300 U
2-Methylnaphthalene	NLE	NLE	1.100 U	NT	0.190 J	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	0.098 J	NT	1.300 U
4-Methylphenol	10000	NLE	1.100 U	NT	1.100 U	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	1.100 U	NT	1.300 U
Naphthalene	4200	100	1.100 U	NT	0.110 J	1.100 U	NT	1.300 U	1.200 U	NT	1.200 U	0.100 J	NT	1.300 U
Phenanthrene	NLE	NLE	0.038 J	NT	2.300	1.100 U	NT	1.300 U	0.500 J	NT	0.210 J	0.230 J	NT	1.300 U
Pyrene	10000	100	0.170 J	NT	2.000	1.100 U	NT	1.300 U	1.000 J	NT	0.210 J	4.800	NT	1.300 U
PCBs														
Aroclor 1260	2	50	0.0041 U	NT	0.0040 U	0.0042 U	NT	0.0041 U	0.34	NT	0.10	0.0039 U	NT	0.0040 U
Metals							•	•	•		-			
Aluminum	NLE	NLE	12700 B	NT	9810 B	7840 B	NT	27700 B	21600 B	NT	28300 B	13200 B	NT	27600 B
Antimony	340	NLE	0.410 U	NT	1.05	0.426 U	NT	0.514 U	0.470 U	NT	0.511 U	0.389 U	NT	0.549 U
Arsenic	20	NLE	6.32	NT	11.4	4.67	NT	24.3	12.8	NT	17.1	6.15	NT	23.4
Barium	47000	NLE	32.3 B	NT	73.5 B	22.0	NT	51.1	54.5	NT	65.9	65.0	NT	676
Beryllium	140	NLE	1.34	NT	0.903	0.899	NT	3.96	2.35	NT	3.09	1.60	NT	3.08
Cadmium	100	NLE	1.02	NT	1.54	0.202	NT	1.29	1.81	NT	1.52	0.444	NT	1.58
Calcium	NLE	NLE	4860 B	NT	1070 B	1700	NT	1110	11300	NT	4630	11600	NT	421
Chromium (Total)	NLE	NLE	104	NT	74.2	62.2	NT	328	313	NT	400	79.5	NT	484
Cobalt	NLE	NLE	3.37	NT	2.05	0.968	NT	4.57	3.93	NT	0.517	1.85	NT	0.418 U
Copper	45000	NLE	20.9 B	NT	33.8 B	4.63 B	NT	13.2 B	36.9 B	NT	18.1 B	9.85 B	NT	13.6 B
Iron	NLE	NLE	42300 B	NT	26100 B	26500	NT	106000	75000	NT	95900	33800	NT	110000
Lead	800	NLE	11.7	NT	204	5.78	NT	0.416 U	91.7	NT	19.6	14.8	NT	0.445 U
Magnesium	NLE	NLE	6590 B	NT	3140 B	3040	NT	17400	12700	NT	14600	5370	NT	16200
Manganese	NLE	NLE	93.1 B	NT	197 B	41.1	NT	36.6	53.7	NT	34.1	146	NT	32.0
Mercury	270	NLE	0.91	NT	0.36	0.099 U	NT	0.122 U	1.19	NT	0.33	0.097 U	NT	0.123 U
Nickel (Soluble Salts)	2400	NLE	9.48 B	NT	12.4 B	4.38	NT	12.1	10.7	NT	7.95	7.91	NT	6.44
Potassium	NLE	NLE	11400 B	NT	5630 B	4600 B	NT	34100 B	22900 B	NT	30400 B	7220 B	NT	32100 B
Sodium	NLE	NLE	35.545 U	NT	38.353 U	36.920 U	NT	44.587 U	40.728 U	NT	44.277 U	33.720 U	NT	47.589 U
Vanadium	7100	NLE	62.4	NT	44.0	40.6	NT	108	114	NT	145	48.1	NT	154
Zinc	1500	NLE	75.1 B	NT	223 B	49.4	NT	124	174	NT	110	74.9	NT	99.0
¹ NJDEP Residential Direct Cont							B = The compound wa	A.			-	-		<u> </u>

¹ NJDEP Residential Direct Contact Soil Cleanup Criteria per NJAC 7:26D, 1999. Beryllium, Copper and Lead criteria per NJAC 7:26D, 2008.

² NJDEP Non-Residential Direct Contact Soil Cleanup Criteria per NJAC 7:26D, 1999. Beryllium, Copper and Lead criteria per NJAC 7:26D, 2008.

³ NJDEP Impact to Groundwater Soil Cleanup Criteria per NJAC 7:26D, 1999.

DUP = Duplicate Sample.

ft. bgs = Feet below ground surface.

NT = Not tested.

NLE = No limit established. mg/kg = milligram per kilogram.

Bold = Analyte was detected.

Shaded = Concentration exceeds level of concern. (Surface soil compared to NRDCSCC. Subsurface soil compared to IGWSCC when available, otherwise compared to NRDCSCC).

B = The compound was found in the associated method blank as well as in the sample.

D = Sample was diluted.

E = The compound's concentration exceeds the calibration range of the instrument for that specific analysis.

J = Mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.

Table 3.10-3 Fort Monmouth Phase II Site Investigation, Parcel 49 Summary of Analytical Parameters Detected in Soil (mg/kg)

								Analytica	al Results			-		
		Sample ID:	P49-SB5-A	P49-SB5-B	P49-SB5-C	P49-SB5-C DUP	P49-SB6-A	P49-SB6-B	P49-SB6-C	P49-SS7-A	P49-SS7-B	P49-SS8-A	P49-SS8-B	P49-SS9-A
		Lab ID:	7051613	7051614	7051615	7051602	7051616	7051617	7051618	7051515	7051516	7051513	7051514	7051511
		Date Sampled:	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/07/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007
		Depth (ft. bgs):	0.0-0.5	1.5-2.0	6.0-6.5	6.0-6.5	0.5-1.0	1.5-2.0	6.5-7.0	0.0-0.5	1.5-2.0	0.0-0.5	1.5-2.0	0.0-0.5
Chemical	NRDCSCC ²	IGWSCC ³	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatiles										•				
Acetone	1000	100	NT	0.045 J	0.290 U	0.330	NT	0.250 U	0.330 U	NT	1.000 B	NT	0.680 B	NT
Carbon disulfide	NLE	NLE	NT	0.300 U	0.290 U	0.290 U	NT	0.250 U	0.330 U	NT	0.280 U	NT	0.270 U	NT
Ethylbenzene	1000	100	NT	0.300 U	0.290 U	0.290 U	NT	0.250 U	0.330 U	NT	0.280 U	NT	0.270 U	NT
Toluene	1000	500	NT	0.300 U	0.290 U	0.290 U	NT	0.250 U	0.330 U	NT	0.280 U	NT	0.270 U	NT
Xylenes (Total)	1000	67	NT	0.900 U	0.860 U	0.880 U	NT	0.750 U	0.980 U	NT	0.850 U	NT	0.810 U	NT
Semi-Volatiles		-							<u> </u>	•		•		
Acenaphthene	10000	100	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	20.000 JD	NT	0.660 J	NT	0.180 J
Acenaphthylene	NLE	NLE	0.260 J	NT	1.200 U	1.200 U	0.076 J	NT	1.200 U	0.450 J	NT	0.048 J	NT	0.490 J
Anthracene	10000	100	0.099 J	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	46.000 JD	NT	1.800	NT	3.000
Benzo[a]anthracene	4	500	0.420 J	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	80.000 D	NT	3.600	NT	10.000 JD
Benzo[a]pyrene	0.66	100	0.420 J	NT	1.200 U	1.200 U	0.110 J	NT	1.200 U	54.000 JD	NT	2.600	NT	9.600
Benzo[b]fluoranthene	4	50	0.460 J	NT	1.200 U	1.200 U	0.140 J	NT	1.200 U	75.000 D	NT	3.900	NT	9.200 JD
Benzo[g,h,i]perylene	4 NLE	NLE	0.260 J	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	16.000 JD	NT	0.840 J	NT	9.200 JD 3.500
Benzo[k]fluoranthene	4	500	0.260 J	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	29.000 JD	NT	1.500	NT	6.200
bis(2-Ethylhexyl)phthalate	210	100	0.100 J	NT	1.200 U	1.200 U	1.000 U	NT	0.100 J	1.100 U	NT	0.690 J	NT	1.200 U
Butyl benzyl phthalate	10000	100	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	0.670 J	NT	0.520 J	NT	1.200 U
Chrysene	40	500	0.610 J	NT	1.200 U	1.200 U	0.150 J	NT	1.200 U	79.000 D	NT	3.700	NT	10.000 JD
Dibenz[a,h]anthracene	0.66	100	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	2.600	NT	0.340 J	NT	1.300
Dibenzofuran	NLE	NLE	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	12.000	NT	0.340 J	NT	0.340 J
	10000	100	1.700 B	NT	1.500 B	0.620 JB	1.000 B	NT	0.760 JB	1.100 U	NT	0.630 JB	NT	1.200 B
Di-n-butyl phthalate Fluoranthene	10000	100	0.410 J	NT	1.200 U	1.200 U	0.071 J	NT	1.200 U	190.000 D	NT	9.000	NT	23.000 D
Fluorene	10000	100	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	17.000 JD	NT	0.640 J	NT	1.200 U
	4	500	0.180 J	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	18.000 JD	NT	0.930 J	NT	3.500
Indeno[1,2,3-cd]pyrene 2-Methylnaphthalene	4 NLE	NLE	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	4.400	NT	0.930 J 0.130 J	NT	0.240 J
4-Methylphenol	10000	NLE	1.100 U	NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	0.320 J	NT	1.200 U	NT	1.200 U
· · · · · · · · · · · · · · · · · · ·	4200	100		NT	1.200 U	1.200 U	1.000 U	NT	1.200 U	11.000	NT	0.280 J	NT	0.098 J
Naphthalene Phenanthrene	NLE	NLE	1.100 U 0.380 J	NT	1.200 U		1.000 U	NT		170.000 D	NT	7.100	NT	13.000
Pyrene	10000	100	0.890 J	NT	1.200 U	1.200 U 1.200 U	0.190 J	NT	1.200 U 1.200 U	160.000 D	NT	7.300	NT	20.000 D
Pyrene	10000	100	0.690 J	INT	1.200 0	1.200 0	0.190 J	INI	1.200 0	160.000 D	INT	7.300	INT	20.000 D
	0	50	0.0040.11	NE	0.0044.11	0.004011	0.004011	NT	0.0000.11	0.47	NT	0.05	NT	0.0044.11
Aroclor 1260 Metals	2	50	0.0040 U	NT	0.0041 U	0.0040 U	0.0042 U	NT	0.0039 U	0.47	NT	8.85	NT	0.0041 U
			(0700 D				11500 D		(5100 D	(E(00.D	- N 			(7500 D
Aluminum	NLE	NLE	13700 B	NT	31400 B	26900 B	11500 B	NT	15100 B	15100 B	NT	14600 B	NT	17500 B
Antimony	340	NLE	0.421 U	NT	0.457 U	0.445 U	0.438 U	NT	0.491 U	0.432 U	NT	0.434 U	NT	0.456 U
Arsenic	20	NLE	10.5	NT	21.5	21.6	5.10	NT	8.92	10.1	NT	10.6	NT	17.4
Barium	47000	NLE	76.9	NT	77.5	80.6	26.2	NT	41.0	93.6 B	NT	95.5 B	NT	53.8 B
Beryllium	140	NLE	1.06	NT	5.22	4.36	0.422	NT	2.50	1.87	NT	1.61	NT	2.11
Cadmium	100	NLE	0.786	NT	2.90	2.21	0.199	NT	0.875	1.86	NT	3.66	NT	1.31
Calcium	NLE	NLE	13300	NT	2460	2740	758	NT	1340	3750 B	NT	2790 B	NT	2500 B
Chromium	NLE	NLE	92.4	NT	351	312	33.7	NT	167	146	NT	144	NT	135
Cobalt	NLE	NLE	1.47	NT	5.15	4.67	1.56	NT	2.45	1.20	NT	1.55	NT	3.01
Copper	45000	NLE	28.3 B	NT	7.42 B	7.74 B	19.8 B	NT	10.5 B	73.1 B	NT	115 B	NT	27.3 B
Iron	NLE	NLE	29000	NT	146000	125000	20300	NT	57400	47800 B	NT	43000 B	NT	69500 B
Lead	800	NLE	176	NT	0.370 U	0.360 U	9.84	NT	11.7	49.1	NT	109	NT	22.7
Magnesium	NLE	NLE	4320	NT	21100	17500	1200	NT	8430	6220 B	NT	6000 B	NT	6630 B
Manganese	NLE	NLE	104	NT	30.2	28.0	82.6	NT	16.0	68.7 B	NT	120 B	NT	163 B
Mercury	270	NLE	0.16	NT	0.111 U	0.120 U	0.093 U	NT	0.114 U	0.113 U	NT	0.119 U	NT	0.109 U
Nickel	2400	NLE	9.88	NT	17.2	12.1	6.69	NT	9.67	8.80 B	NT	12.1 B	NT	14.7 B
Potassium	NLE	NLE	7010 B	NT	47500 B	38300 B	1940 B	NT	19800 B	13200 B	NT	10700 B	NT	13800 B
Sodium	NLE	NLE	36.475 U	NT	39.649 U	38.587 U	89.8	NT	42.551 U	37.456 U	NT	37.629 U	NT	39.562 U
Vanadium	7100	NLE	58.3	NT	137	103	43.4	NT	81.1	74.2	NT	71.8	NT	85.8
Zinc	1500	NLE	304	NT	138	147	32.9	NT	110	255 B	NT	206 B	NT	193 B
¹ NJDEP Residential Direct Conta			000 Daailline Oaraa	and the set set of a state of a set	NUAC 7:00D 0000				ated method blank as w					

¹ NJDEP Residential Direct Contact Soil Cleanup Criteria per NJAC 7:26D, 1999. Beryllium, Copper and Lead criteria per NJAC 7:26D, 2008.

² NJDEP Non-Residential Direct Contact Soil Cleanup Criteria per NJAC 7:26D, 1999. Beryllium, Copper and Lead criteria per NJAC 7:26D, 2008.

³ NJDEP Impact to Groundwater Soil Cleanup Criteria per NJAC 7:26D, 1999.

DUP = Duplicate Sample.

ft. bgs = Feet below ground surface.

NT = Not tested.

NLE = No limit established.

mg/kg = milligram per kilogram.

Bold = Analyte was detected.

Shaded = Concentration exceeds level of concern. (Surface soil compared to NRDCSCC. Subsurface soil compared to IGWSCC when available, otherwise compared to NRDCSCC). $\mathsf{B}=\mathsf{The}$ compound was found in the associated method blank as well as in the sample.

D = Sample was diluted.

E = The compound's concentration exceeds the calibration range of the instrument for that specific analysis.

J = Mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.

Table 3.10-3 Fort Monmouth Phase II Site Investigation, Parcel 49 Summary of Analytical Parameters Detected in Soil (mg/kg)

							Analytical Results				
		Sample ID:	P49-SS9-B	P49-SS10-A	P49-SS10-B	P49-SS11-A	P49-SS11-B	P49-SS12-A	P49-SS12-B	P49-SS13-A	P49-SS13-B
		Lab ID:	Р49-339-D 7051512	7051503	Р49-3310-В 7051504	7051505	7051506	7051507	Р49-3312-B 7051508	7051509	Р49-3313-D 7051510
		Date Sampled:	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007	12/06/2007
		Depth (ft. bgs):	1.5-2.0	0.0-0.5	1.5-2.0	0.0-0.5	1.5-2.0	0.0-0.5	1.5-2.0	0.0-0.5	1.5-2.0
Chemical	NRDCSCC ²	IGWSCC ³	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatiles	INEDCOCC	101/300	rtoodit	rtoodit	rtoodit	rtoodit	rtoodit	rtoodit	rtoodit	rtoodit	Rooun
Acetone	1000	100	0.760 B	NT	0.770 B	NT	0.670 B	NT	0.670	NT	0.780 B
Carbon disulfide	NLE	NLE	0.320 U	NT	0.280 U	NT	0.300 U	NT	0.280 U	NT	0.290 U
Ethylbenzene	1000	100	0.058 J	NT	0.280 U	NT	0.300 U	NT	0.280 U	NT	0.290 U
Toluene	1000	500	0.047 J	NT	0.280 U	NT	0.300 U	NT	0.280 U	NT	0.290 U
Xylenes (Total)	1000	67	0.119 J	NT	0.850 U	NT	0.890 U	NT	0.850 U	NT	0.880 U
Semi-Volatiles											
Acenaphthene	10000	100	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Acenaphthylene	NLE	NLE	NT	0.073 J	NT	0.059 J	NT	0.130 J	NT	0.097 J	NT
Anthracene	10000	100	NT	0.083 J	NT	0.093 J	NT	0.100 J	NT	0.200 J	NT
Benzo[a]anthracene	4	500	NT	0.470 J	NT	0.350 J	NT	0.380 J	NT	0.810 J	NT
Benzo[a]pyrene	0.66	100	NT	0.610 J	NT	0.310 J	NT	0.360 J	NT	0.730 J	NT
Benzo[b]fluoranthene	4	50	NT	0.960 J	NT	0.430 J	NT	0.580 J	NT	1.200	NT
Benzo[g,h,i]perylene	NLE	NLE	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Benzo[k]fluoranthene	4	500	NT	0.340 J	NT	0.220 J	NT	0.220 J	NT	0.490 J	NT
bis(2-Ethylhexyl)phthalate	210	100	NT	0.160 J	NT	0.150 J	NT	0.500 J	NT	0.220 J	NT
Butyl benzyl phthalate	10000	100	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Chrysene	40	500	NT	0.600 J	NT	0.440 J	NT	0.480 J	NT	0.860 J	NT
Dibenz[a,h]anthracene	0.66	100	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Dibenzofuran	NLE	NLE	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Di-n-butylphthalate	10000	100	NT	1.300 B	NT	0.380 JB	NT	1.900 B	NT	0.800 JB	NT
Fluoranthene	10000	100	NT	0.780 J	NT	0.670 J	NT	0.690 J	NT	1.600	NT
Fluorene	10000	100	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Indeno[1,2,3-cd]pyrene	4	500	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
2-Methylnaphthalene	NLE	NLE	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
4-Methylphenol	10000	NLE	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Naphthalene	4200	100	NT	1.100 U	NT	1.100 U	NT	1.100 U	NT	1.200 U	NT
Phenanthrene	NLE	NLE	NT	0.270 J	NT	0.370 J	NT	0.380 J	NT	0.750 J	NT
Pyrene PCBs	10000	100	NT	1.100 U	NT	0.770 J	NT	1.100 J	NT	2.200	NT
Aroclor 1260											
	2	50	NT	0.004111	NT	0.0030.11	NT	0.004111	NT	0.004111	NT
	2	50	NT	0.0041 U	NT	0.0039 U	NT	0.0041 U	NT	0.0041 U	NT
Metals											
Metals Aluminum	NLE	NLE	NT	7420 B	NT	7720 B	NT	10500 B	NT	7310 B	NT
Metals Aluminum Antimony	NLE 340	NLE NLE	NT NT	7420 B 0.472 U		7720 B 0.451 U	NT NT		NT NT	7310 B 0.475 U	
Metals Aluminum	NLE	NLE	NT	7420 B	NT NT	7720 B	NT	10500 B 0.433 U	NT	7310 B	NT NT
Metals Aluminum Antimony Arsenic	NLE 340 20	NLE NLE NLE	NT NT NT	7420 B 0.472 U 6.32	NT NT NT	7720 B 0.451 U 7.66	NT NT NT	10500 B 0.433 U 10.3	NT NT NT	7310 B 0.475 U 5.23	NT NT NT
Metals Aluminum Antimony Arsenic Barium	NLE 340 20 47000	NLE NLE NLE NLE	NT NT NT NT	7420 B 0.472 U 6.32 39.7 B	NT NT NT NT	7720 B 0.451 U 7.66 39.4 B	NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818	NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B	NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium	NLE 340 20 47000 140	NLE NLE NLE NLE NLE	NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361	NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381	NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B	NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346	NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium	NLE 340 20 47000 140 100	NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511	NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429	NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723	NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424	NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	NLE 340 20 47000 140 100 NLE	NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B	NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B	NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B	NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B	NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	NLE 340 20 47000 140 100 NLE NLE	NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1	NT NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6	NT NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7	NT NT NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9	NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	NLE 340 20 47000 140 100 NLE NLE NLE	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19	NT NT NT NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36	NT NT NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07	NT NT NT NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20	NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	NLE 340 20 47000 140 100 NLE NLE NLE 45000	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B	NT NT NT NT NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 2.36 24.3 B	NT NT NT NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B	NT NT NT NT NT NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B	NT NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron	NLE 340 20 47000 140 100 NLE NLE NLE 45000 NLE	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B	NT NT NT NT NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 2.36 24.3 B 13600 B	NT NT NT NT NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B	NT NT NT NT NT NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B	NT NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	NLE 340 20 47000 140 100 NLE NLE NLE 45000 NLE 800	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT NT NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0	NT NT NT NT NT NT NT NT NT NT NT NT NT	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 2.36 24.3 B 13600 B 35.0	NT NT NT NT NT NT NT NT NT NT NT NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101	NT NT NT NT NT NT NT NT NT NT NT NT NT	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7	NT NT NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	NLE 340 20 47000 140 100 NLE NLE NLE NLE NLE NLE NLE MLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0 2830 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 24.3 B 13600 B 35.0 4190 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101 4130 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7 5610 B	NT NT NT NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	NLE 340 20 47000 140 100 NLE NLE NLE NLE A5000 NLE A5000 NLE 800 NLE NLE	NLE NLE NLE NLE NLE NLE NLE NLE NLE NLE	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0 2830 B 132 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 24.3 B 13600 B 35.0 4190 B 115 B	NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101 4130 B 95.9 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7 5610 B 281 B	NT NT NT NT NT NT NT NT NT NT NT NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	NLE 340 20 47000 140 100 NLE NLE 45000 NLE 800 NLE 800 NLE 270 2400 NLE	NLE	NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0 2830 B 132 B 0.113 U 8.10 B 1320 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 24.3 B 13600 B 35.0 4190 B 115 B 0.106 U 15.5 B 1270 B	NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101 4130 B 95.9 B 0.108 U 9.12 B 5470 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7 5610 B 281 B 0.107 U 8.09 B 1280 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	NLE 340 20 47000 140 100 NLE NLE 45000 NLE 800 NLE 800 NLE 270 2400 NLE	NLE NLE	NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0 2830 B 132 B 0.113 U 8.10 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 24.3 B 13600 B 35.0 4190 B 115 B 0.106 U 15.5 B	NT NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101 4130 B 95.9 B 0.108 U 9.12 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7 5610 B 281 B 0.107 U 8.09 B 1280 B 41.153 U	NT NT
Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	NLE 340 20 47000 140 100 NLE NLE 45000 NLE 800 NLE 800 NLE 270 2400 NLE	NLE	NT NT	7420 B 0.472 U 6.32 39.7 B 0.361 0.511 34800 B 27.1 2.19 19.5 B 15600 B 46.0 2830 B 132 B 0.113 U 8.10 B 1320 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7720 B 0.451 U 7.66 39.4 B 0.381 0.429 44700 B 25.6 2.36 24.3 B 13600 B 35.0 4190 B 115 B 0.106 U 15.5 B 1270 B	NT	10500 B 0.433 U 10.3 55.0 B 0.818 0.723 23100 B 71.7 2.07 36.8 B 25400 B 101 4130 B 95.9 B 0.108 U 9.12 B 5470 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N	7310 B 0.475 U 5.23 38.4 B 0.346 0.424 65400 B 25.9 2.20 26.8 B 12900 B 49.7 5610 B 281 B 0.107 U 8.09 B 1280 B	NT NT NT NT NT NT NT NT NT NT NT NT NT N

² NJDEP Non-Residential Direct Contact Soil Cleanup Criteria per NJAC 7:26D, 1999. Beryllium, Copper and Lead criteria per NJAC 7:26D, 2008. ³ NJDEP Impact to Groundwater Soil Cleanup Criteria per NJAC 7:26D, 1999.

DUP = Duplicate Sample.

ft. bgs = Feet below ground surface. NT = Not tested.

NLE = No limit established.

mg/kg = milligram per kilogram.

Bold = Analyte was detected.

Shaded = Concentration exceeds level of concern. (Surface soil compared to NRDCSCC. Subsurface soil compared to IGWSCC when available, otherwise compared to NRDCSCC).

D = Sample was diluted.

E = The compound's concentration exceeds the calibration range of the instrument for that specific analysis.

J = Mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.

Table 3.10-4 Fort Monmouth Phase II Site Investigation, Parcel 49 Summary of Analytical Parameters Detected in Groundwater (µg/L)

		Analytical Results Sample ID: P49-283-MW1 P49-283-MW3 P49-296-MW7 P49-B4MWOB4 P49-GW-1 P49-GW-2										
	Sample ID:	P49-283-MW1	P49-283-MW1 DUP	P49-283-MW3	P49-296-MW7	P49-B4MWOB4	P49-GW-1	P49-GW-2				
	Lab ID:	7051808	7051803	7051807	7051806	7051809	7051804	7051805				
	Date Sampled:	12/08/2007	12/08/2007	12/08/2007	12/08/2007	12/08/2007	12/08/2007	12/08/2007				
	Screened Interval (ft. bgs):	9.8-19.8	9.8-19.8	14.1-24.1	1.8-11.8	7.1-17.1	5-10	9-14				
Chemical	Quality Criteria ¹	Result	Result	Result	Result	Result	Result	Result				
Volatiles												
Acetone	6000	0.85 U	0.85 U	0.85 U	1.08	0.85 U	14.21	0.85 U				
Benzene	1	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	1.24	0.17 U				
Bromodichloromethane	1	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	1.35				
Chloroform	70	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	3.47				
Ethylbenzene	700	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.25 J	0.28 U				
Methyl ethyl ketone (2-Butanone)	300	0.14 U	0.14 U	0.14 U	0.61	0.14 U	1.35	0.14 U				
Toluene	600	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	1.39	0.27 U				
Vinyl Chloride	1	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.27 J	0.30 U				
Xylenes (Total)	1000	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	2.75	0.49 U				
Semi-Volatiles												
Benzoic acid	30000	0.86 U	0.86 U	0.86 U	6.47	0.86 U	0.86 U	0.86 U				
bis(2-Ethylhexyl)phthalate	3	0.80 J	1.04 J	6.77	3.55	1.28 U	25.94	1.22 J				
Diethyl phthalate	6000	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	7.70	0.96 U				
Naphthalene	300	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.64 J	0.76 U				
Metals												
Aluminum	200	4900	5110	60.8	112	106	NT	NT				
Arsenic	3	2.70 U	2.70 U	3.68	6.17	2.70 U	NT	NT				
Barium	6000	123	126	95.6	8.99	40.2	NT	NT				
Beryllium	1	1.28	1.33	0.100 U	0.100 U	0.100 U	NT	NT				
Cadmium	4	0.550 B	0.592 B	0.273 B	0.297 B	0.626 B	NT	NT				
Calcium	NLE	11900	12300	17100	14600	7140	NT	NT				
Cobalt	100*	5.58	5.79	0.200 U	0.200 U	0.200 U	NT	NT				
Copper	1300	2.78	2.65	0.500 U	0.500 U	0.500 U	NT	NT				
Iron	300	323 U	323 U	10200	10600	1220	NT	NT				
Magnesium	NLE	22100	22900	3310	3180	2850	NT	NT				
Manganese	50	51.6	52.8	49.0	84.9	36.3	NT	NT				
Nickel (Soluble Salts)	100	14.4	14.7	7.34	0.300 U	0.300 U	NT	NT				
Potassium	NLE	6570	6810	8500	6830	3470	NT	NT				
Selenium	40	2.70 U	4.51	2.70 U	2.70 U	3.64	NT	NT				
Silver	40	0.881	0.800 U	0.800 U	0.800 U	0.800 U	NT	NT				
Sodium	50000	110000 B	114000 B	8610 B	7430 B	11000 B	NT	NT				
Vanadium	NLE	0.500 U	0.500 U	0.500 U	0.854	0.500 U	NT	NT				
Zinc	2000	103	107	3.58 U	3.58 U	18.3	NT	NT				

¹ Higher of Practical Quantitation Limits (PQLs) & Groundwater Quality Criterion (GWQC) per NJAC 7:9-6, 2005 (* Interim GWQC).

DUP = Duplicate Sample.

NLE = No limit established.

µg/L = micrograms per liter.

ft. bgs = Feet below ground surface. NT = Not tested.

D = Sample was diluted.

E = The compound's concentration exceeds the calibration range of the instrument for that specific analysis.

B = The compound was found in the associated method blank as well as in the sample.

J = Mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.

Bold = Analyte was detected. Shaded = Concentration exceeds Quality Criteria.

Table 3.10-5Fort Monmouth Phase II Site Investigation, Parcel 49Summary of Analytical Parameters Detected in Sediment (mg/kg)

Chemical ER-L Volatiles Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261 Benzo[a]pyrene 0.430	LE NLE	0: 12/06/2007 d: 7051520	P49-SD1-A 12/27/2007 7056801 0.0-0.5 Result	P49-SD1-B 12/06/2007 7051521 1.5-2.0 Result	P49-SD1-B 12/27/2007 7056802 1.5-2.0 Result	P49-SD2-A 12/06/2007 7051522 0.0-0.5	P49-SD2-A 12/27/2007 7056803	P49-SD2-A DUP 12/06/2007	P49-SD2-B 12/06/2007	P49-SD2-B 12/27/2007	P49-SD2-B 12/06/2007	P49-SD3-A 12/06/2007	P49-SD3-A 12/27/2007	P49-SD3-B 12/06/2007	P49-SD3-B 12/27/2007
Volatiles Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261	Date Sample Depth (ft. bg: R-L ¹ ER-M ²	d: 7051520): 0.0-0.5 Result	7056801 0.0-0.5 Result	7051521 1.5-2.0	7056802 1.5-2.0	7051522			12/06/2007	12/27/2007	12/06/2007	10/06/0007	12/27/2007	12/06/2007	10/07/2007
Volatiles Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261	Depth (ft. bg: <u>R-L¹ ER-M²</u> LE NLE): 0.0-0.5 Result	0.0-0.5 Result	1.5-2.0	1.5-2.0		7056803				12/00/2001	12/06/2007	12/21/2007	12/00/2007	12/21/2007
Volatiles Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261	LE NLE	Result	Result			0.0-0.5		7051502	7051523	7056804	7051502	7051524	7056805	7051525	7056806
Volatiles Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261	LE NLE		-	Result	Result		0.0-0.5	0.0-0.5	1.5-2.0	1.5-2.0	1.5-2.0	0.0-0.5	0.0-0.5	1.5-2.0	1.5-2.0
Acetone NLE Semi-Volatiles Benzo[a]anthracene 0.261		NT			Roodit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Semi-Volatiles Benzo[a]anthracene 0.261		NT													
Benzo[a]anthracene 0.261	261 1.6		0.350 U	0.460 B	NT	NT	0.360 U	NT	0.320 B	NT	1.600 B	NT	0.320 U	0.420 B	NT
	061 1.6														
Benzo[a]pyrene 0.430	1.0	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.200 J	NT	NT	1.400 U
	1.6	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.160 J	NT	NT	1.400 U
Benzo[b]fluoranthene NLE	LE NLE	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.240 J	NT	NT	1.400 U
Benzo[k]fluoranthene 0.240	240 NLE	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.091 J	NT	NT	1.400 U
bis(2-Ethylhexyl)phthalate NLE	LE NLE	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	0.250 J	NT	0.070 J	NT	NT	0.520 J
Chrysene 0.384	384 2.8	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.230 J	NT	NT	1.400 U
Di-n-butylphthalate NLE	LE NLE	0.890 JB	NT	NT	0.100 JB	2.400 B	NT	0.950 JB	NT	0.470 JB	NT	1.500 B	NT	NT	1.400 U
Fluoranthene 0.600	500 5.1	0.920 U	NT	NT	1.300 U	2.100 U	NT	0.160 J	NT	1.400 U	NT	0.410 J	NT	NT	0.140 J
Phenanthrene 0.240	240 1.5	0.920 U	NT	NT	1.300 U	2.100 U	NT	2.500 U	NT	1.400 U	NT	0.160 J	NT	NT	1.400 U
Pyrene 0.665	665 2.6	0.920 U	NT	NT	1.300 U	2.100 U	NT	0.130 J	NT	1.400 U	NT	0.370 J	NT	NT	0.150 J
Metals															
Aluminum NLE	LE NLE	29200 B	NT	NT	29400 B	13900 B	NT	18500 B	NT	36300 B	NT	15600 B	NT	NT	19200 B
Arsenic 8.2	.2 70	16.5	NT	NT	16.4	14.8	NT	22.9	NT	16.7	NT	29.7	NT	NT	17.0
Barium NLE	LE NLE	96.4 B	NT	NT	39.9 B	65.3 B	NT	79.0 B	NT	110 B	NT	83.7 B	NT	NT	57.2 B
Beryllium NLE	LE NLE	4.52	NT	NT	4.08	2.42	NT	3.24	NT	5.13	NT	1.70	NT	NT	2.13
Cadmium 1.2	.2 9.6	1.65	NT	NT	0.971 B	4.92	NT	5.55	NT	1.41 B	NT	1.02	NT	NT	0.844 B
Calcium NLE	LE NLE	719 B	NT	NT	430 B	1690 B	NT	2210 B	NT	1700 B	NT	1360 B	NT	NT	804 B
Chromium (Total) 81	31 370	353	NT	NT	329	176	NT	243	NT	394	NT	149	NT	NT	204
Cobalt NLE	LE NLE	4.91	NT	NT	3.22	19.4	NT	29.3	NT	4.18	NT	2.10	NT	NT	0.446 U
Copper 34	34 270	18.9 B	NT	NT	12.7 B	82.3 B	NT	111 B	NT	21.0 B	NT	76.5 B	NT	NT	18.9 B
Iron NLE	LE NLE	120000 B	NT	NT	123000 EB	48900 B	NT	67800 B	NT	160000 EB	NT	49900 B	NT	NT	71100 EB
Lead 47	7 218	0.432 U	NT	NT	0.413 U	41.8	NT	45.7	NT	4.99	NT	148	NT	NT	23.4
Magnesium NLE	LE NLE	20600 B	NT	NT	17400 B	7610 B	NT	10800 B	NT	22400 B	NT	6190 B	NT	NT	8440 B
Manganese NLE	LE NLE	44.8 B	NT	NT	19.3	24.2 B	NT	28.3 B	NT	34.9	NT	61.7 B	NT	NT	22.8
Mercury 0.15	15 0.71	0.124 U	NT	NT	0.119 U	0.49	NT	0.53	NT	0.145 U	NT	0.23	NT	NT	0.134 U
Nickel (Soluble Salts) 21	21 52	13.1 B	NT	NT	14.6	44.0 B	NT	68.5 B	NT	17.9	NT	11.3 B	NT	NT	11.1
Potassium NLE	LE NLE	40800 B	NT	NT	38600	15800 B	NT	22600 B	NT	49200	NT	11800 B	NT	NT	17700
Silver 1.0	.0 3.7	0.203 U	NT	NT	0.195 U	1.40	NT	0.407 U	NT	0.234 U	NT	0.208 U	NT	NT	0.223 U
Sodium NLE	LE NLE	219	NT	NT	44.262 U	69.037 U	NT	92.593 U	NT	53.211 U	NT	47.409 U	NT	NT	50.781 U
Vanadium NLE	LE NLE	125	NT	NT	146	82.3	NT	118	NT	156	NT	79.3	NT	NT	93.2
Zinc 150	50 410	139 B	NT	NT	131	1320 B	NT	2090 B	NT	155	NT	117 B	NT	NT	93.7

¹ NJDEP Marine/Estuarine Sediment Screening Guidelines, Effects Range - Low, 1998.

² NJDEP Marine/Estuarine Sediment Screening Guidelines, Effects Range - Medium, 1998.

DUP = Duplicate Sample.

ft. bgs = Feet below ground surface.

mg/kg = milligram per kilogram.

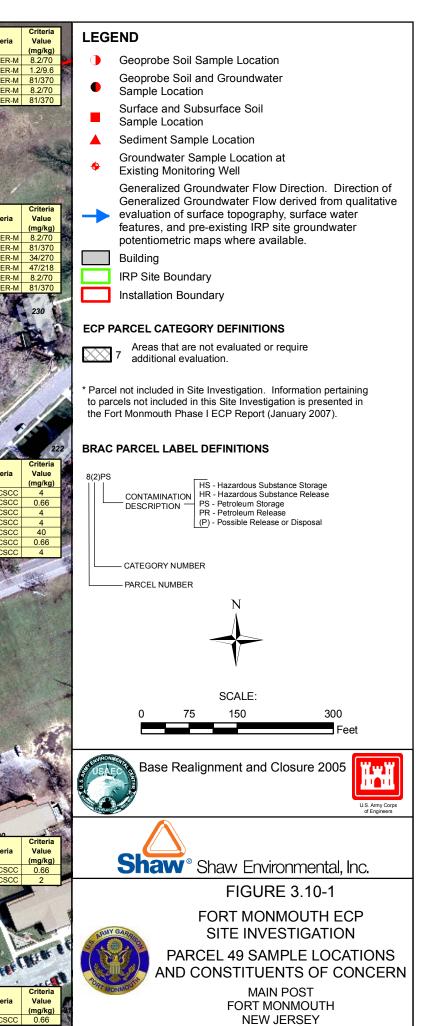
Bold = Analyte detected.

Shaded = Concentration exceeds ER-L.

NT = Not tested.

NLE = No limit established.

B = The compound was found in the associated method blank as well as in the sample.


D = Sample was diluted.

E = The compound's concentration exceeds the calibration range of the instrument for that specific analysis.

J = Mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.

			A CONTRACTOR		MARKAN BARKAT MARKANANANANANANANANANANANANANANANANANANA	AND A VERY AND A REPORT OF A DESCRIPTION OF A DESCRIPTION OF						
Sample ID Media Depth (ft bgs)	Compound	Concentration (mg/kg)	Criteria	Criteria Value				Sample ID	Media Depth (ft bgs)	Compound	Concentration (mg/kg) Cri	iteria
P49-SD2-A SD 0.0-0.5	Arsenic	14.8	ER-L/ER-M	(mg/kg) 8.2/70		2 1 4	and the second s	P49-SD1-A	SD 0.0-0.5	Arsenic	16.5 ER-L	./ER-N
P49-SD2-A DUP SD 0.0-0.5	Arsenic	22.9	ER-L/ER-M	8.2/70	and a set of the			P49-SD1-A P49-SD1-A	SD 0.0-0.5 SD 0.0-0.5	Cadmium Chromium	353 ER-L	./ER-N
P49-SD2-A SD 0.0-0.5 P49-SD2-A	Cadmium	4.92	ER-L/ER-M	1.2/9.6		S. S		P49-SD1-B P49-SD1-B	SD 1.5-2.0 SD 1.5-2.0	Arsenic Chromium		./ER-N
DUP SD 0.0-0.5 P49-SD2-A SD 0.0-0.5	Cadmium Chromium	5.55 176	ER-L/ER-M	1.2/9.6 81/370								
P49-SD2-A DUP SD 0.0-0.5	Chromium	243	ER-L/ER-M	81/370								
P49-SD2-A SD 0.0-0.5 P49-SD2-A SD 0.0-0.5	Copper	82.3 B	ER-L/ER-M	34/270	A state of the second second					-		大田
DUP SD 0.0-0.5 P49-SD2-A SD 0.0-0.5	Copper Silver	111 B 1.40	ER-L/ER-M	34/270 1/3.7								
P49-SD2-A SD 0.0-0.5 P49-SD2-A SD 0.0-0.5	Zinc	1320 B	ER-L/ER-M	150/410								
DUP SD 0.0-0.5 P49-SD2-B SD 1.5-2.0	Zinc Arsenic	2090 B 16.7	ER-L/ER-M	150/410 8.2/70				Sample ID	Media Depth (ft bgs)	Compound	Concentration (mg/kg)	teria
P49-SD2-B SD 1.5-2.0 P49-SD2-B SD 1.5-2.0	Cadmium Chromium	1.41 B 394	ER-L/ER-M ER-L/ER-M	1.2/9.6 81/370		DADKE	RS CREEK	P49-SD3-A	SD 0.0-0.5	Arsenic	29.7 ER-I	./ER-I
	1 Alexandre					PANNEI	NO ONLER	P49-SD3-A P49-SD3-A	SD 0.0-0.5 SD 0.0-0.5	Chromium Copper	76.5 B ER-L	./ER-I ./ER-I
			~					P49-SD3-A P49-SD3-B	SD 0.0-0.5 SD 1.5-2.0	Lead Arsenic	17.0 ER-L	./ER-I
								P49-SD3-B	SD 1.5-2.0	Chromium	204 ER-I	JER-I
Sample ID Media Depth (ft bgs)	Compound	Concentration	Criteria	Criteria Value							ALC: AND	
P49-GW-2 GW 9-14	Bromodichloromethane	1.35 ug/L	NJ GWQC	1 ug/L					ARTE ON		- 15A	-
			and the	al a la				ALCO SAL			A start	
			The seal		and a second second second				A COLE		AND THE	A.
Samela ID. Media Depth (ft		Concentration	ALTO DESCRIPTION ALL	Criteria				C States		A PAN	The state	and the second
bgs)	Compound	(ug/L)	Criteria	Value (ug/L)				a literation		*****	San Contraction	
P49-GW-1 GW 5-10	Benzene	1.24	NJ GWQC	1		P49'SD1	P49-SD3	P49-B4M	WOB4		THE A	
Charles Car	i Cai			1	101-18		P49-SD2	HE Y			-	1
Sample ID Media Depth (ft	Compound	Concentration	Criteria	Criteria Value			145	Sample ID	Media Depth (ft bgs)	Compound	Concentration (mg/kg) Cr	teria
P49-SS13-A SS 0.0-0.5	Benzo[a]pyrene	(mg/kg) 0.730 J	NRDCSCC	(mg/kg) 0.66				P49-SS7-A	SS 0.0-0.5	Benzo[a]anthracene	80.000 D NRE	CSC
NO PARK			*		P49SS/SB/GW-1			P49-SS7-A P49-SS7-A		Benzo[a]pyrene Benzo[b]fluoranthene	75.000 D NRD	
		1			P49-SS12			P49-SS7-A P49-SS7-A	SS 0.0-0.5	Benzo[k]fluoranthene Chrysene	79.000 D NRE	
	Call Brief Contraction				P49-SS10 289	149-203-101003		P49-SS7-A P49-SS7-A		Dibenz[a,h]anthracene ndeno[1,2,3-cd]pyrene	2.6000 NRD 18.000 JD NRD	CSCO
		The second	/		(Former)		288					14
	AND AND	tha /			293 P49-S	S/SB4 P49-SS7			7.4	9.3.	vienue	-
	P49-296	MW7			295	E I	283		2	and the second	Sherrill Av	
is well the		PAQ-S	S/SB6			F	P49-283-MW1			1		
		145-0	SS/SB6	29.	290	240 550	P49-SS/SB3		- An		TAT	
					(Former)	149-558		. /.		R J		
1 . A	Des /					50(2)PS/PR*				No. A.	h	
					P49-SS/SB5				Con Con	Nem		
- Balling and				and the second	291		Lo de la companya de	S.C. Tork	and and			
A CONTRACT			A CONTRACTOR	N/				and the second	AQ P	A The A	the second second	
- CAR		1	· · · · ·	X	296 IP49-SS9			C	1	WI PARK	HERE'S	100
	All and a second								11	· · · ·	Bitter .	ALC: NO
				2.L					MAR .	We en	C FE C	-
Carana a			10:22			muu ha 😆		555				00
	- ALA	1			49((7)HS/HR(P)/PS/PR(P)		Sample ID	Media Depth (ft bgs)	Compound	Concentration (mg/kg) Cr	teria
AND BURNESS	and the second s	Nienue-	- A CONTRACTOR OF THE OWNER	Contraction of the		Manna Anna E	Brev	P49-SS8-A	SS 0.0-0.5	Benzo[a]pyrene	2.600 NRE	CSC
	Sher	nill Avon	S at a		1 50			P49-SS8-A	SS 0.0-0.5	Aroclor 1260	8.85 NRE	CSC
	Contraction of the second					Allow				4		F
and the second second	A MARINE	-1					× 100 30 3	P.P.			2	
Sample ID Media Depth (ft		Concentration		Criteria				- 1	AL POR	002	Neg State	
bgs)	Compound	(mg/kg)	Criteria	Value (mg/kg)			V SALLE EV		in a		1.6	-
P49-SS9-A SS 0.0-0.5 P49-SS9-A SS 0.0-0.5 P49-SS9-A SS 0.0-0.5	Benzo[a]anthracene Benzo[a]pyrene	10.000 JD 9.600	NRDCSCC NRDCSCC	4 0.66	600	A Matthew			Media Depth (ft		Concentration	
P49-SS9-A SS 0.0-0.5 P49-SS9-A SS 0.0-0.5 P49-SS9-A SS 0.0-0.5	Benzo[b]fluoranthene Benzo[k]fluoranthene	9.200 JD 6.200	NRDCSCC NRDCSCC	4		5. 3.	VENEE	Sample ID	bgs)	Compound	(mg/kg)	teria
P49-SS9-A SS 0.0-0.5	Dibenz[a,h]anthracene	1.300	NRDCSCC	0.66		Part of the state	A 3810 F. 5	P49-SB4-A	SB 0.0-0.5	Benzo[a]pyrene	2.200 NRE	CSCC

ArcGIS File: MP_Fig3_10-1_SI_P49_Exceeds_SampLoc.mxd (7/14/2008 12:27:27 PM)

3.11 Parcel 50 – IRP Sites FTMM-54, FTMM-55, and FTMM-61

3.11.1 Site Description

Site FTMM-54 is a former fuel distribution facility on the MP which was abandoned. The tanks and distribution piping were rediscovered during a renovation project at Bldg 296. The facility dates back to the 1940s and is located on Sherrill Avenue. The UST system was comprised of ten 1,000-gallon tanks which stored various types of fuel products. These products were distributed from remote pumping islands located over 450 ft from the UST field and within 50 ft of Parkers Creek (a sensitive estuarine marsh area).

FTMM-55 is the site of a former UST system which was located at Bldg 290. The site formerly served as a motor pool for a military unit that has since left FTMM.

Site FTMM-61 is located off of Sherrill Avenue in the northern section of the MP. On August 28, 1997, a 3,000-gallon steel UST (No. 0081533- 229) was removed. The tank was used to store gasoline. The UST was located within the courtyard of Bldg 283. Additional information pertaining to this parcel can be found in Section 5.2.1.1, Table 5-10, Section 5.13.2, and Appendix G of the Phase I ECP (1).

3.11.2 Previous Investigations

The Bldg 296 site, the Bldg 290 site, and the M-18 Landfill are located in close proximity to one another (44). Due to the close proximity, the RI results for all three sites were reported in one RI Report. This report, submitted to the NJDEP in October 2003, presents a groundwater flow and transport model to evaluate the migration of benzene and metals in groundwater.

<u>FTMM-54: Bldg 296</u>. Between November and December 1993, the previously unknown fuel distribution system was removed and the source of contamination was eliminated. Benzene and lead were detected in site monitoring wells above NJDEP GWQC. An NFA determination was requested for this site. Currently, as part of the monitoring program, seven groundwater monitoring wells are sampled on a quarterly basis. The cleanup strategy is to continue compliance monitoring of seven groundwater monitoring wells.

<u>FTMM-55: Bldg 290</u>. The UST tanks at this location were used to store gasoline and they were both removed on September 2, 1994. On July 2, 1996, a construction activity identified gasoline-contaminated soil within 50 ft of the former UST site. Soils were removed and disposed of in accordance with NJDEP requirements. Additional soil and groundwater samples were collected in March 1998 to further delineate the area of contamination. No additional contaminated soils were identified within the AOC. Arsenic and lead were detected in site monitoring wells above NJDEP GWQC. An NFA determination was requested for this site. The cleanup strategy is to continue compliance monitoring of two groundwater monitoring wells.

<u>FTMM-61: Bldg 283</u>. Approximately 400 cubic yards of contaminated soil (associated with the removed UST) were removed and disposed of in accordance with NJDEP requirements. Benzene, ethyl benzene, toluene, and lead were detected above the NJDEP GWQC. The cleanup strategy is to inject ORC for 2 years and continue compliance monitoring of groundwater (six wells quarterly) and surface water. This is a key component of monitored natural attenuation. ORC injection is anticipated for 2008 and 2009. Injection of ORC is subject to requirements pursuant to N.J.A.C 7:26E-4.1(a)4 and N.J.A.C. 7:26E-6.3(c) related to the performance of a pilot study and approval of a permit-by-rule.

3.11.3 Site Investigation Sampling

Through previous investigations conducted under the IRP, groundwater VO contamination has been identified in close proximity to Bldg 283. All groundwater is currently being addressed under the IRP. However, Bldg 283 is a two-story building with a basement and totals approximately 76,500 square feet in size. The footprint of Bldg 283 covers approximately 50,000 square feet. Per NJDEP guidance and consistent with USEPA policy, the NJDEP recommends investigation of VI where structures are within 100 ft horizontally or vertically of shallow groundwater contamination in excess of GWSLs. In the case of the presence of petroleum hydrocarbon contamination (particularly BTEX), a 30-ft distance criterion is utilized (12). BTEX contaminants have been detected above the GWSLs within 30 ft of the Bldg 283. Therefore, VI at Bldg 283 was evaluated through the collection of near-slab soil gas samples and indoor air samples. No sub-slab soil gas samples were collected at Bldg 283 due to the observation of groundwater intrusion within the basement during the 2006 VSI.

See **Table 3.11-1** for a summary of proposed field activities and **Figure 3.11-1** for sample locations. An analytical summary of sampling activities, including sample IDs, collection dates, and analytical parameters, is provided in **Table 3.11-2**.

Sample	Sample	Sample Location Rationale	Analytical
Location	Media		Suite
50SG-1 through 50SG-5 (5 samples)	Near-slab soil gas	Five near-slab soil gas samples were collected at Bldg 283. Groundwater flow direction is to the northwest, and VOs have been detected above GWSLs in groundwater within the courtyard area of Bldg 283 and near the northwestern corner of the building. Therefore, four sample locations were biased to the walls of Bldg 283 on the northwest side of the courtyard (50SG-1:4), and one was biased to the northwestern corner of the building (50SG-5).	NJDEP – SRWM USEPA TO-15 Method

Table 3.11-1Parcel 50 Sampling Location, Rationale and Analytical

Sample	Sample	Sample Location Rationale	Analytical
Location	Media		Suite
50IA-1 through 50IA-10 (10 samples – includes 1 duplicate sample)	Indoor air	Nine indoor air samples were collected from within Bldg 283. One additional ambient air sample was collected from outside the building. Sample locations were biased towards potential source areas and potential migration pathways.	NJDEP – SRWM USEPA TO-15 Method

3.11.4 Site Investigation Results

A total of 25 VOs were detected in soil gas samples (**Table 3.11-3**) collected in Parcel 50. Of the 25 VOs detected, two (benzene and PCE) equaled and/or exceeded NJDEP Soil Gas NRSs for soil gas samples. Benzene was detected in two of the five soil gas samples at a concentration equal to the NRS of 26 μ g/m³ (samples 50SG-2 and 3). PCE was detected in two of the five soil gas samples at concentrations greater than the NRS of 36 μ g/m³; ranging from 97.6 μ g/m³ in sample 50SG-1 to 144 μ g/m³ in sample 50SG-5.

A total of 23 VOs were detected at concentrations below NJDEP Indoor Air NRSs in indoor air samples collected in Bldg 283 (**Table 3.11-4**).

3.11.5 Summary and Conclusions

No constituents were identified above applicable NJDEP criteria in indoor air samples collected from Bldg 283. Two VOs, benzene and PCE, equaled and/or exceeded NJDEP Soil Gas NRSs in soil gas at Parcel 50. Based on NJDEP VI guidance (12), one additional round of indoor air sampling is recommended to confirm constituents are not present above criteria in indoor air at Bldg 283.

Table 3.11-2Parcel 50 Sample and Analytical Summary

Media	Туре	Field Sample #	Sample Date	Sample Time	Begin Depth	End Depth	трнс	VO+15	B\N+15	PCBs	TAL Metals	Cyanide	Mercury	Ammonia/ Nitrate/ Nitrite	COMMENTS/VARIANCES
IA	CANISTER	50IA-1	12/09/07	11:50				Х							
IA	CANISTER	50IA-2	12/09/07	11:51				Х							
IA	CANISTER	50IA-3	12/09/07	11:52				Х							
IA	CANISTER	50IA-4	12/09/07	12:05				Х							
IA	CANISTER	50IA-5	12/09/07	12:07				Х							
IA	CANISTER	50IA-6	12/09/07	12:12				Х							
IA	CANISTER	50IA-7	12/09/07	12:30				Х							
IA	CANISTER	50IA-8	12/09/07	12:25				Х							
IA	CANISTER	50IA-8 DUPLICATE	12/09/07	12:25				Х							
IA	CANISTER	50IA-9	12/09/07	12:20				Х							
BLANK	AMBIENT	50IA-AMBIENT	12/09/07	12:33				Х							
SG	CANISTER	50SG-1	12/12/07	13:45	5.0	5.0		Х							
SG	CANISTER	50SG-2	12/12/07	14:25	5.0	5.0		Х							
SG	CANISTER	50SG-3	12/12/07	15:05	5.0	5.0		Х							
SG	CANISTER	50SG-4	12/12/07	15:55	5.0	5.0		Х							
SG	CANISTER	50SG-5	12/12/07	12:40	5.0	5.0		Х							

X = Sample analyzed for the indicated analytical parameter suite

					Analytica	I Results		
		Sample ID:	50IA-1	50IA-2	50IA-3	50IA-4	50IA-5	50IA-6
		Lab ID:	J78674-1	J78674-2	J78674-3	J78674-4	J78674-5	J78674-6
		Date Sampled:	12/09/07	12/09/07	12/09/07	12/09/07	12/09/07	12/09/07
	DA1 3	IA Non-						
Chemical	RAL ³	residential ²	Result	Result	Result	Result	Result	Result
Volatiles								
Acetone	6,600	4,600	4.5	4.3	11	8.1	7.8	7.1
Benzene	14	2	1.2	1.2	1.2	1.2	1.2	1.1
Chloromethane	NLE	130	0.97	0.95	1.0	1.0	1.0	1.0
Dichlorodifluoromethane	NLE	260	2.2	2.2	2.5	2.3	2.4	2.3
Dichloromethane	400	9	1.1	0.52 J	0.80	0.49 J	0.52 J	0.52 J
Ethanol	NLE	NLE	4.7	6.2	4.1	18	16	14
Ethyl Acetate	NLE	NLE	<0.3	2.7	4.0	1.8	<0.3	<0.3
Ethylbenzene	2,200	1,500	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083
n-Heptane	NLE	NLE	<0.13	<0.13	<0.13	0.61 J	0.57 J	<0.13
Isopropyl Alcohol	NLE	NLE	0.76	0.64	1.1	2.3	15	12
Methyl ethyl ketone	NLE	7,200	0.41 J	0.53 J	1.4	0.86	0.94	0.94
Propylene	NLE	NLE	2.1	1.9	2.2	<0.12	<0.12	<0.12
Tetrahydrofuran	NLE	NLE	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	10,000	7,200	2.0	2.1	1.9	2.1	2.1	2.2
1,1,1-Trichloroethane	NLE	1,400	<0.27	<0.27	<0.27	0.87 J	<0.27	<0.27
1,1,2-Trichloro-1,2,2-trifluoroethane	NLE	44,000	<0.25	<0.25	0.77 J	<0.25	<0.25	<0.25
Trichloroethylene	20	3	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
Trichlorofluoromethane	NLE	1,000	1.3	1.2	1.3	1.5	2.0	2.0
1,2,4-Trimethylbenzene	NLE	NLE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3,5-Trimethylbenzene	NLE	NLE	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088
o-Xylene	NLE	NLE	0.61 J	0.43 J	0.43 J	0.37 J	<0.096	0.48 J
Xylenes (m&p)	NLE	NLE	1.4	1.1	1.2	1.0	0.96	1.2
Xylenes (total)	220	150	2.0	1.6	1.7	1.4	0.96	1.7

Table 3.11-3Fort Monmouth ECP Site Investigation, Parcel 50Summary of Analytical Parameters Detected in Indoor Air (µg/m³)

¹ NJDEP Generic Vapor Intrusion Screening Levels, Indoor Air Screening Levels, Residential, March 2007.

² NJDEP Generic Vapor Intrusion Screening Levels, Indoor Air Screening Levels, Nonresidential, March 2007. Results were compared to these levels.

³ NJDEP Rapid Action Levels for Indoor Air, March 2007.

J = Indicates an estimated value.

DUP = Duplicate Sample

NLE = No Limit Established

Bold = Analyte detected

Shaded = Concentration exceeds of IA Nonresidential.

Summary		cal Parame	iers Delect)	
					Analytical Res	ults	
		Sample ID:	50IA-7	50IA-8	50IA-8 DUP	50IA-9	50IA-AMBIENT
		Lab ID:	J78674-7	J78674-8	J78674-9	J78674-10	J78674-20
	[Date Sampled:	12/09/07	12/09/07	12/09/07	12/09/07	12/09/07
	D 41 3	IA Non-					
Chemical	RAL ³	residential ²	Result	Result	Result	Result	Result
Volatiles							
Acetone	6,600	4,600	8.3	6.9	4.0	7.8	4.5
Benzene	14	2	1.2	1.2	1.2	1.1	1.2
Chloromethane	NLE	130	1.0	1.1	1.1	1.2	1.1
Dichlorodifluoromethane	NLE	260	2.3	2.3	2.6	2.7	2.7
Dichloromethane	400	9	0.52 J	0.52 J	0.49 J	0.56 J	0.76
Ethanol	NLE	NLE	18	6.2	3.2	19.2	5.7
Ethyl Acetate	NLE	NLE	2.6	2.5	4.7	<0.3	1.4
Ethylbenzene	2,200	1,500	0.78 J	<0.083	<0.083	0.42 J	<0.083
n-Heptane	NLE	NLE	0.49 J	<0.13	0.40 J	0.49 J	<0.13
Isopropyl Alcohol	NLE	NLE	2.1	1.7	<0.15	2.7	0.76
Methyl ethyl ketone	NLE	7,200	2.2	0.77	0.56 J	0.97	0.68
Propylene	NLE	NLE	<0.12	<0.12	2.2	<0.12	2.2
Tetrahydrofuran	NLE	NLE	0.83	<0.2	<0.2	<0.2	<0.2
Toluene	10,000	7,200	3.4	2.0	1.9	2.1	2.0
1,1,1-Trichloroethane	NLE	1,400	<0.27	<0.27	<0.27	<0.27	<0.27
1,1,2-Trichloro-1,2,2-trifluoroethane	NLE	44,000	<0.25	<0.25	<0.25	<0.25	<0.25
Trichloroethylene	20	3	<0.16	<0.16	<0.16	<0.16	0.64 J
Trichlorofluoromethane	NLE	1,000	2.4	1.3	1.4	2.6	1.4
1,2,4-Trimethylbenzene	NLE	NLE	2.1	<0.1	<0.1	1.2	<0.1
1,3,5-Trimethylbenzene	NLE	NLE	0.48 J	<0.088	<0.088	<0.088	<0.088
o-Xylene	NLE	NLE	1.1	0.40 J	0.40 J	0.43 J	0.40 J
Xylenes (m&p)	NLE	NLE	2.7	1.0	1.1	1.3	1.1
Xylenes (total)	220	150	3.9	1.4	1.5	1.7	1.5

Table 3.11-3Fort Monmouth ECP Site Investigation, Parcel 50Summary of Analytical Parameters Detected in Indoor Air (ug/m³)

¹ NJDEP Generic Vapor Intrusion Screening Levels, Indoor Air Screening Levels, Residential, March 2007.

² NJDEP Generic Vapor Intrusion Screening Levels, Indoor Air Screening Levels, Nonresidential, March 2007. Results were compared to these levels.

³ NJDEP Rapid Action Levels for Indoor Air, March 2007.

J = Indicates an estimated value.

DUP = Duplicate Sample

NLE = No Limit Established

Bold = Analyte detected

Shaded = Concentration exceeds of IA Nonresidential.

Table 3.11-4Fort Monmouth ECP Site Investigation, Parcel 50Summary of Analytical Parameters Detected Soil Gas (ug/m³)

			A	nalytical Resul	ts	
	Sample ID:	50SG-1	50SG-2	50SG-3	50SG-4	50SG-5
	Lab ID:	J79249-6	J79249-7	J79249-8	J79249-9	J79249-5
	Date Sampled:	12/12/07	12/12/07	12/12/07	12/12/07	12/12/07
	Depth (ft. bgs):	5'	5'	5'	5'	5'
	SG Non-					
Chemical	residential ²	Result	Result	Result	Result	Result
Volatiles						
Acetone	230,000	102	40.6	60.6	14	24.5
Benzene	26	22	26	26	<0.7	<0.7
Carbon disulfide	51,000	6.2	4.7 J	4.4 J	3.4 J	6.5
Cyclohexane	430,000	6.2	11	6.9	<1.2	<1.2
Ethanol	NLE	50.3	<2.3	26.6	34.3	25.4
Ethylbenzene	74,000	8.3	6.1 J	4.8 J	<0.65	3.6 J
4-Ethyltoluene	NLE	6.4 J	<0.69	<0.69	<0.69	<0.69
n-Heptane	NLE	20	32	32	<0.98	<0.98
n-Hexane	51,000	40.9	79.3	56.0	<0.99	<0.99
2-Hexanone	NLE	4.9 J	<1.6	<1.6	<1.6	<1.6
Isopropyl Alcohol	NLE	5.7	<1.2	<1.2	<1.2	9.8
4-Methyl-2-pentanone (MIBK)	220,000	8.2	<0.82	<0.82	<0.82	<0.82
Methyl ethyl ketone	360,000	4.7	<0.91	<0.91	<0.91	<0.91
Methyl tertiary butyl ether (MTBE)	180	6.1	<1.3	<1.3	<1.3	<1.3
Propylene	NLE	15	20.4	14	5.7 J	12
Tertiary Butyl Alcohol	4,600	<1.1	<1.1	<1.1	3.0 J	<1.1
Tetrachloroethylene	36	97.6	9.5 J	14	<1.3	144
Toluene	360,000	55.8	62.6	56.9	8.7	8.7
Trichloroethylene	27	<1.3	9.7	<1.3	<1.3	26
1,2,4-Trimethylbenzene	NLE	35	7.4 J	<0.84	6.4 J	17
1,3,5-Trimethylbenzene	NLE	7.9	<0.69	<0.69	<0.69	<0.69
2,2,4-Trimethylpentane	NLE	22	38	34	8.4	<0.75
Xylenes (m&p)	NLE	36	24	20	7.8	18
o-Xylene	NLE	13	8.3	6.9	<0.74	7.4
Xylenes (total)	7,700	49.5	32	27	7.8	25

¹ NJDEP Generic Vapor Intrusion Screening Levels, Soil Gas Screening Levels, Residential, March 2007.

² NJDEP Generic Vapor Intrusion Screening Levels, Soil Gas Screening Levels, Nonresidential, March 2007. Results were compared to these levels.

(a) = Sum of cis-1,2-Dichloroethylene and trans-1,2-Dichloroethylene.

J = Indicates an estimated value.

DUP = Duplicate Sample

NLE = No Limit Established

Bold = Analyte detected.

Shaded = Concentration exceeds SG Nonresidential.

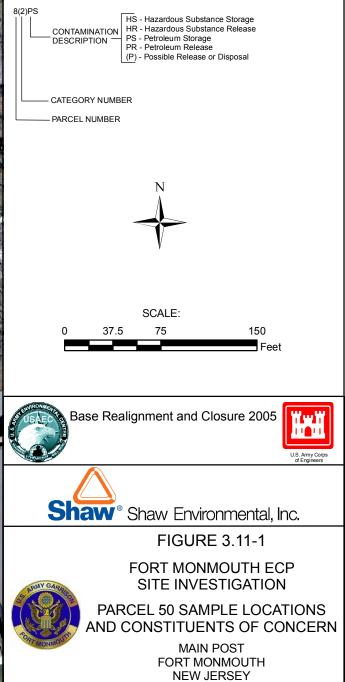
	12			ting and		i el	
Sample ID	Media	Depth (ft bgs)	Compound	Concent (ug/r	n ³)	Criteria (Criteria Value (ug/m3)
50SG-5	SG	5	PCE	14	4 SG No	n-residential	36
1 120	The second	The second					
an stand in	P.A.S.	2.60	F.				
	the the	gent it	1	LAR	The second		The second
-	-		1		Mar and		1441
			X		TPP		
	17	- Catalant		LE	EE		
No. 1	1 Barris	A A	1 10	AL PROPERTY		295	
	1			M			K.
Sample ID	Media	Depth	Compound	Concent			Criteria Value
50SG-3	SG	(ft bgs) 5	Benzene	(ug/r 26	n°)		(ug/m3) 26
	00					295	
Part Ser	1						
	Trans						
and the second	TT	3					
			E.	F.			
	292			2	1	50(2 291)PS/PR
	T		1	/			
			./				
	TI					291	
	A.		HITPH .				
			296				
status ·	The second						A Contraction
Ŧ	Ŧ				the state	1: 1	CIN-
Ŧ	Ŧ	Sample	ID Media	Depth (ft bgs)	Compound	Concentration (ug/m ³)	Cr
	and the	50SG-2	2 SG	(it bgs) 5	Benzene	26	SG Non
CILLON	X at	ATA		and the second s	and a second		1111
	She	errill.Avenue	A me		* * *	Ham	
	S			Depth		Concentration	
Y and		Sample		(ft bgs)	Compound	(ug/m³)	Ci
102 8 1		50SG-	-1 SG	5	PCE	97.6	SG No
GIS File: MP_Fig3_11-1_SI_P50_Ex	ceeds_SampLoc.mxd (7/1	4/2008 12:51:46 PM)		A REAL PROPERTY			

LEGEND * Soil-Gas Sample Location

Đ,

555

Indoor Air Sample Location Generalized Groundwater Flow Direction. Direction of Generalized Groundwater Flow derived from qualitative evaluation of surface topography, surface water features, and pre-existing IRP site groundwater potentiometric maps where available.


IRP Site Boundary

ECP PARCEL CATEGORY DEFINITIONS

2 Areas where only release or disposal of petroleum products has occurred.

BRAC PARCEL LABEL DEFINITIONS

